UNIT-2
(Section-2)

RCS-603: COMPUTER GRAPHICS
Presented By :
Dr. Vinod Jain (Associate Professor, GLBITM)

UNIT-2 Syllabus — Section 2
CHAPTER 6 Two-Dimensional Viewing
Donal D. Hearn and M. Pauline Baker

Windowing and Clipping: Viewing pipeline. Viewing transformations, 2-D Clipping
algorithms- Line clipping algorithms such as Cohen Sutherland line clipping algorithm.
Liang Barsky algorithm. Line clipping against non rectangular clip windows: Polygon
clipping — Sutherland Hodgeman polygon clipping, Weiler and Atherton polygon clipping.
Curve clipping, Text clipping

CHAPTER 6 Two-Dimensional Viewing
Donal D. Hearn and M. Pauline Baker

1. Windowing And Clipping: Viewing Pipeline
2. Viewing Transformations
3. 2-D Clipping Algorithms
1. Line Clipping Algorithms Cohen Sutherland Line Clipping Algorithm

2. Liang Barsky Algorithm
3. Line Clipping Against Non Rectangular Clip Windows

4. Polygon Clipping
1. Sutherland Hodgeman Polygon Clipping
2. Weiler And Atherton Polygon Clipping

5. Curve Clipping
6. Text Clipping

Windowing and Clipping:

* It consider the formal mechanism [viewins coordinate

- . - . Window
for displaying views of a picture on \ Normalized Space
an output device. : iy Viewport
- . - t+ ws
* For a two-dimensional picture, a /% ‘ ']E Window
view Is selected by specifying a ——,
subarea of the total picture area. ws1 Viewport Window ws2 Viewport

Monitor 1 Monitor 2

Windowing and Clipping:

* A user can select a single area for
display, or several areas could be
selected for simultaneous display.

 Transformations from world to

device coordinates Involve
translation, rotation, and scaling
operations, as well as procedures for
deleting those parts of the picture
that are outside the limits of a
selected display area.(clipping)

Viewing Coordinate
Window

%

\

e s

TRy

Normalized Space

Viewport

)ft *

ws1 Viewport

Monitor 1

ws1
Window

ws2
Window

ws2 Viewport

Monitor 2

Windowing and Clipping:

 Transformations from world to

device coordinates Involve
translation, rotation, and scaling
operations, as well as procedures
for deleting those parts of the
picture that are outside the limits of
a selected display area.(clipping)

Viewing Coordinate
Window

N\

'

¥

Normalized Space

Vlewpon

=i

ws1 Viewport Window C? Viewport

Monitor 1

ws‘l

ws2
Window

Monitor 2

Viewing Pipeline

e Window

e A world-coordinate area selected for
display is called a window.

* Viewport

* An area on a display device to which a
window is mapped is called a
viewport.

* The window defines what is to be
viewed; the viewport defines where it
is to be displayed.

Viewing Coordinate

Window

N\

Normalized Space

~

Vlewpon

=i

ws1 Viewport Window C? Viewport

Monitor 1

ws1

ws2
Window

Monitor 2

Viewing Pipeline

* Viewing Transformation.

* The mapping of a part of a world-
coordinate scene to device
coordinates is referred to as a
viewing transformation.

Viewing Coordinate

Window

N\

Normalized Space

~.
e

ws1 Viewport

A

Monitor 1

Viewport
A ‘ { ws2
Window
—
\
A 1

ws1

Window ws2 Viewport

Monitor 2

Viewing Pipeline

* Figure 6-1 illustrates the mapping of a picture section that falls
within a rectangular window onto a desighated & angular viewport.

Window

World Coordinates ' Device Coordinates
Figirre 6-1
A viewing transtormation using standard rectang.es for the window and viewport.

Viewing Pipeline

* It consist a sequence of steps used to perform two dimensional
viewing transformations

* The major steps are as follows

Map Viewing

" Construct ' Conven
World-Coordinate World- Coordinates to
MC Scene Using Coordinates Normalized
=" Modeling-Coordinate 0 Viewing Coordinates -
Transformations Viewing using Window- viawpurt
Coordinatas Specifications

— T e T ™ e B T ™ T ™

Frgury b-2
The two-dimensional viewing-transformation pipeline.

218

Viewing Pipeline

1. We construct the scene in world coordinates

2. We then transform descriptions in world coordinates to viewing
coordinates.

3. We then define viewport in normalized coordinates (in the range
fromOto 1)

4. At the final step, all parts of the picture that he outside the
viewport are clipped, and the contents of the viewport are

transformed to device coordinates.
Map '\Ic:nin.l_l!iz-adj
Viewponi 1o |
MY Devige ¥ ‘A DC
Viewing Coordinatas ~ Coordinates ~ +

3

" Construct Convert Map Viewing
World-Coordinate Workd- Coordinates to
MC Scene Using Wi Coordinates Normalized

— ™ Modaling-Coordinate
Transformations

o
Viewing
Coordinates

using Window-Viewport
Specifications

Viewing Pipeline

212

";9"
y world 1+
/Window
o [[I _~Viewpoint
L *b’.o'* 4
X x world 0 1
World Coordinates Normalized
Device Coordinates
Figure 6-3

Setting up a rotated world window in viewing coordinates and the
corresponding normalized-coordinate viewport.

Normalized Coordinates

* Viewports are typically defined within the unit
square (normalized coordinates).

* This provides a means for separating the viewing
and other transformations from specific output-
device requirements, so that the graphics
package is largely device-independent.

_~Viewpoim

: |
1

Normalized
Device Coordinstes

Viewing Coordinate Reference Frame

(a) translate the viewing origin
to the world origin,

(b) rotate to align the axes of
the two systemes.

r's
world /

L
[/
0"

(a)

world | view

Figure 6-4

A viewing-coordinate frame is moved into coincidence with the world
frame in two steps: (a) translate the viewing origin to the world origin,

then (b) rotate to align the axes of the two systems.

Viewing Coordinate Reference Frame wedle /

* The composite two-dimensional transformation to
convert world coordinates to viewing coordinate is

Mweve =R-T (6-1)

* where T is the translation matrix that takes the Wil | view
viewing origin point P to the world origin, and R is
the rotation matrix that aligns the axes of the two
reference frames.

’ X view
~
. \/R x world

(b)

6.3 WINDOW-TO-VIEWPORT COORDINATE e
TRANSFORMATION

Clipping Window fiate

YW, ..+ mmmmm—m e ———— 1 T
7 7 max : ° | Normalization

| (xw, yw) | Viewport

: ! yvmax“ |——;—__-|

| Zidis

: i | (xv, yv) :

| ' YO, | '

| | SR T — -
y'u)min o e gy i g S gy -

i 1 t f }

W XMW 0| xv, > 1 R |
Figure 6-7

A point (xw, yw) in a world-coordinate clipping window is mapped to viewport coordinates (xv, yv),
within a unit square, so that the relative positions of the two points in their respective rectangles
are the same.

6.3 WINDOW-TO-VIEWPORT COORDINATE *==

TRANSFORMATION

* We maintain the same relative placement in the viewport as in the
window.

* If a coordinate position is at the center of the world window, for
instance, it will be displayed at the center of the viewport.

Clipping Window §iats
,v?‘l"n]“\ i 0 Y e 1 - -
' | ® , Normalization
, (xw, yw) | Viewport
: ! yvmux T :——;_—_'—|
| i | (xv,yv) :
|
| | VO : |
| | 5l S RS e R T
Y Wit T S i o o e S =
1 } % % }
XW min XW nax 0 XVnmin XV max 1

6.3 WINDOW-TO-VIEWPORT COORDINATE

TRANSFORMATION

* A point at position (xw,yx) in the window is mapped into position

(xv,yv) in the associated viewport.

VWosa T

Wmln 3

{xv, yv|

ywnu T

! ©

|

i xw, yw)

i
ywm-n

N e e +

xwl‘f’llﬂ xw“l

Figure 6-5

A point at position (xw, yw) in a designated window is mapped to
viewport coordinates (xv, yv) so that relative positions in the two areas

are the same.

o
< g
& ~
(S \/
~1 v
- v
M 5
. A

RN SN PR »

6.3 WINDOW-1

TRANSFORMA

 We maintain the same relative placement in the viewport as in the

window.

XV = XV

|ON

U = XWemin

X ’,mn\ - XU

min

YU = ¥min _

'rwmax - xwﬂ' N

B L

Yax — yvmm

YWrax = Y&@min

Wm.l T

Wmin 5

O-VIEWPORT COORDINATE

““ “-l
< 0
&)

4 Y
~ ¥
w ‘v
- v
N £ 4

RN SN PR »

6.3 WINDOW-TO-VIEWPORT COORDINATE
TRANSFORMATION

Solving these expressions for the viewport position (xv, yv), we have

X0 = XVpyn + (XW — W)X
YO = YOuin + (y'll..’ o ywmm)sy
where the scaling factors are
XVmax = XUpyn
XWhax — XWmin

YVmax _:ivmin
YWrax = YW

K (.-

Sy =

2-D Clipping Algorithms

Clip Rectangle

2-D Clipping Algorithms

* Clipping - Any procedure that identifies those portions of a picture
that are either inside or outside of a specified region of space is
referred to as a clipping algorithm, or simply clipping.

* The region against which an object is to clipped is called a clip

window.
7 - ¥
\

i

Clip Rectangle

Applications Of Clipplng

Applications of clipping include

1. Drawing and painting operations that allow parts of a picture to be
selected for copying, moving, erasing, or duplicating.

2. Extracting part of a defined scene for viewing;

3. ldentifying visible surfaces in three-dimensional views;
4. Antialiasing line segments or object boundaries;

5. Creating objects using solid-modeling procedures;

6. Displaying a multi window environment;

Types of clipping

* We consider algorithms for clipping the following primitive types
Point Clipping

Line Clipping (straight-line segments)

Area Clipping (polygons)

Curve Clipping

A S

Text Clipping

Point Clipping

e we save a point P = (x, y) if
it is inside the clipping
window.

wy2

3 (x,y)

wx1 «

» WX2

wy2

3 (x,y)

Point Clipping

wy1
wx1 Wx2

* Assuming that the clip window is a rectangle in standard position, we
save a point P = (x, y) for display if the following inequalities are
satisfied:

XW min ~~ oy " XW a

yujmin = V = yu"m.'\

» where the edges of the clip window @min Tmin ¥%min ¥¢max) can be
either the world-coordinate window boundaries or viewport
boundaries. If any one of these four inequalities is not satisfied, the
point is clipped (not saved for display).

AR M

Line Clipping Algorithms

Befare Clipping Attar Clipping
(a) ()

Figure 6-7
Line clipping against a rectangular chp window

Line Clipping Algorithms

* A line clipping procedure involves several

1.

parts.

First, we can test a given line segment to
determine whether it lies completely
inside the clipping window.

If it does not, we try to determine
whether it lies completely outside the
window.

Finallyy, we must perform intersection
calculations with one or more clipping
boundaries.

Cohen Sutherland Line Clipping Algorithm ~ *==*

Basic |ldea:

» First, do easy test
— completely inside or
outside the box?
» If no, we will need
to figure out how

line intersects the
box

Cohen Sutherland Line Clipping Algorithm ~ ®==*

e Every line end point in a picture is assigned a four-digit binary code,
called a region code, that identifies the location of the point relative

to the boundaries of the clipping rectangle.

1001 o1 0101
Firast bit set 1 : Point lies to left of window x= x5,
second bit set 1 0 Point lies to right of window x=x . 1000 0000 0100
Third bit set 1 : Point lies below(hottom) window v = v 4
fourth bit set 1 : Point lies above(ton) window ¥ = ¥y WVindow
LREBT (Left, Right, Bottom, Top).
10140 0010 0110

Cohen Sutherland Line Clipping Algorithm

Y

* Find color codes of the points
* P1(5,6) P2 (25,15) P2 (25,15)
* P4(15,60) P5 (15,15) P6 (25,40)

Firstbit set 1 : Point lies to left of window x= x4,

secotnd bit set 1 0 Point lies to right of window x=x .

Third bit set 1 : Point lies below{hottom) window ¥ = ¥4

fourth bit zet 1 0 Point lies abovelton) window ¥ = ¥
LREBT (Left, Right, Bottom, Top).

(10,20)

(20,20)

(10,10) (20,10)
1001 o001 0101
1000 o000 0100

WVinudow
1010 o010 0110

Cohen Sutherland

0101
1010

1010

1001 | 1000
' ~WT

Window

0101 | 0100 | 0110

WL WR

32

Cohen Sutherland

0101 1001 | 1000
0010 :

Window

0101 : 0100
WL

WR

1010

0110

-- WT

33

Cohen Sutherland

oo 1001 | 1000 | 1010
' e =}

Window

0101 | 0100 | 0110
WL WR

34

Cohen Sutherland

0001 1001 | 1000 | 1010
0000 | I

Window

0101 | 0100 | 0110
WL WR

35

Cohen Sutherland

0000
0000

1001 | 1000 | 1010
------- ' e W
Window
0001 0 | 0010
---------------- WB

0101 | 0100 | 0110
WL WR

36

Cohen Sutherland Line Clipping Algorithm

* Trivial Acceptance

 If the logical OR is zero, the line can be
trivially accepted.

* For example, if the endpoint codes are
0000 and 0000, the logical OR is 0000 - the
line can be trivially accepted.

* If the endpoint codes are 0000 and 0110,
the logical OR is 0110 and the line can not
be trivally accepted.

1001 o001 0101
1000 o000 0100
WWindow
1010 o010 0110

Cohen Sutherland Line Clipping Algorithm

* Trivial Rejection

 If the logical AND of the endpoint codes is not
zero, the line can be trivally rejected.

* For example, if an endpoint had a code of 1001
while the other endpoint had a code of 1010, the
logical AND would be 1000 which indicates the
line segment lies outside of the window.

* On the other hand, if the endpoints had codes of
1001 and 0110, the logical AND would be 0000,
and the line could not be trivally rejected.

1001 o001 2101

1000 CLTLTLTL 0100
W iIndow

1010 o010 2110

Cohen-Sutherland Algorithm (2/2)

» y=yo+slope X (x —xp)and x = xy + (Slope) X (¥ = Yo)
» Algorithm:
ComputeOutCode(x0, y0, outcodel); else if RIGHT then
ComputeOutCode(x1, y1, outcodel); y=y0+(yl -y0)* (xmax - x0) / (x1 - x0);
repeat X = Xmax;
check for trivial reject or trivial accept else if LEFT then
pick the point that is outside the clip rectangle y=y0 +(yl -y0) * (xmin - x0) / (x1 - x0);
X = xmin;
if TOP then
x=x0+ (x1-x0)*(ymax-y0) / (v1-y0); if (x0, y0 is the outer point) then
y = ymax; x0 = x; y0 = y; ComputeOutCode(x0, y0,
else if BOTTOM then outcode0)
x =x0 + (x1 - x0) * (ymin - y0) / (y1 - y0); else
y = ymin; x1 =x; vl =y; ComputeOutCode(x1, y1,
outcodel)

until done

Cohen Sutherland Line Clipping Example

* Consider the line segment AD.

* Point A has an outcode of 0000 and point D has an

outcode of 1001.
* The logical AND of these outcodes

IS zero;

therefore, the line cannot be trivally rejected.

e Also, the logical OR of the outcodes is not zero;
therefore, the line cannot be trivally accepted.

* The algorithm then chooses D as the outside point

(its outcode contains 1's).

* By our testing order, we first use the top edge to

clip
outcode as 0000.

AD at B. The algorithm then recomputes B's

* With the next iteration of the algorithm, AB is
tested and is trivially accepted and displayed.

1001 o001 0101

1000 LLILTITL) 0100
MWindow

1010 o010 0110

Cohen Sutherland Line Clipping Example

 Consider the line segment El.

* Point E has an outcode of 0100, while point I's
outcode is 1010.

* The results of the trivial tests show that the line can
neither be trivally rejected or accepted.

 Point E Is determined to be an outside point, so the

algorithm clips the line against the bottom edge of

the window.
* Now line EI has been clipped to be line FlI.

* Line FI is tested and cannot be trivially accepted or
rejected. Point F has an outcode of 0000, so the
algorithm chooses point | as an outside point since
Its outcode i1s1010.

1001

001

0101

1000

OO0
Window

o100

1010

o010

0110

Cohen Sutherland Line Clipping Example

* Line FI is tested and cannot be trivially accepted
or rejected.

* Point F has an outcode of 0000, so the algorithm

chooses point | as an outside point since its *=—

outcode 1s1010.

« The line FI is clipped against the window's top
edge, yielding a new line FH.

 Line FH cannot be trivally accepted or rejected.
Since H's outcode is 0010, the next iteration of
the algorthm clips against the window's right
edge, yielding line FG.

 The next iteration of the algorithm tests FG, and
It is trivially accepted and display:.

1001

001

0101

1000

OO0
Window

o100

1010

o010

0110

Cohen Sutherland Line Clipping Algorithm

: (20,20)
e Numerical (10,20)

* Find visible portion of the line
between points

* P1(x0,y0) = (12,8) (10,10) (20,10)
e P2(x1,y1) = (15,15)

Curve Clipping

 Areas with curved boundaries can be
clipped with methods similar to those
discussed in the previous sections.

* Curve-clipping procedures will involve
nonlinear equations, however, and this
requires more processing than for objects
with linear boundaries.

Botore Chpping

ANler Cloping

! il;‘;"."t". J '.x‘l“, Cin .l'

Curve Clipping : Complete accept or reject = *==*

* If the bounding rectangle for the object is
completely inside the window, we save the
object.

Botore Chpping

* If the rectangle is determined to be
completely outside the window, we discard

the object. ‘

* But if the bounding rectangle test fails, we Alint Cllaoieg
can look for other computation-saving
approaches.

! il;‘;“.l'.'.' a nlied circle

Curve Clipping : Complete accept or reject

e For a circle,

e we can use the coordinate extents of
individual quadrants and then octants for
preliminary testing (outside or inside) and
then calculate curve-window intersections.

Soforo Chpping

Aher Cloiping

\ il;‘;‘:"t"' J '.lnl\’ ..'.'- '4'

Text Clipping

STRING 1

<
4TRING 3

STRING 4

‘Before C lib—bing

1
W

—

N 1

&\ T
TRING 3
STRING 4 |

After Clipping.

Text Clipping

 Various techniques are used to provide text clipping in a computer
graphics.

* It depends on the methods used to generate characters and the
requirements of a particular application.

* There are three methods for text clipping which are listed below -
1. All or none string clipping

2. All or none character clipping

3. Text clipping

All or none string clipping

* In all or none string clipping method, either we keep the entire string
or we reject entire string based on the clipping window.

STRING 2

Before Clipping After Clipping

All or none character clipping

In this method if the string is partially outside the window, then -

1. You reject only the portion of the string being outside
2.

If the character is on the boundary of the clipping window, then we

discard that entire character and keep the rest string.

\ STRING1 |
bhecoshacaacseaild
"""""" I
| STRING2 !
' STRING3
NN 11— !
Before Clipping

ING 1

STRING 2

RING 3

After Clipping

Text clipping

e If it is partially outside the window, then
1. You reject only the portion of string being outside.

2. If the character is on the boundary of the clipping window, then we

discard only that portion of character that is outside of the clipping
window.

o —

T”“NG 1 STRING 1

Before Clipping After Clipping

CHAPTER 6 Two-Dimensional Viewing
Donal D. Hearn and M. Pauline Baker

1. Windowing And Clipping: Viewing Pipeline
2. Viewing Transformations
3. 2-D Clipping Algorithms
1. Line Clipping Algorithms Cohen Sutherland Line Clipping Algorithm

2. Liang Barsky Algorithm
3. Line Clipping Against Non Rectangular Clip Windows

4. Polygon Clipping
1. Sutherland Hodgeman Polygon Clipping
2. Weiler And Atherton Polygon Clipping

5. Curve Clipping
6. Text Clipping

CHAPTER 6 Two-Dimensional Viewing
Donal D. Hearn and M. Pauline Baker

1. 2-D Clipping Algorithms
1. Liang Barsky Algorithm
2. Line Clipping Against Non Rectangular Clip Windows

2. Polygon Clipping
1. Sutherland Hodgeman Polygon Clipping
2. Weiler And Atherton Polygon Clipping

Liang — Barsky clipping

*» In computer graphics, the Liang—Barsky
algorithm (named after You-Dong
Liang and Brian A. Barsky) is a line
clipping algorithm.

» The Liang—Barsky algorithm uses the parametric
equation of a line and inequalities describing the
range of the clipping window to determine the
iIntersections between the line and the clipping
window. With these intersections it knows which
portion of the line should be drawn.

» This algorithm is significantly more efficient
than Cohen-Sutherland.

Liang-Barsky Algorithm

* The Liang-Barsky algorithm is a line clipping algorithm.

* This algorithm is more efficient than Cohen—Sutherland line clipping
algorithm and can be extended to 3-Dimensional clipping.

* This algorithm is considered to be the faster parametric line-clipping
algorithm.

Liang-Barsky Algorithm

* The following concepts are used in this clipping:
* The parametric equation of the line.

e X =x0 + u(x1-x0)

* Y =vy0 + u(yl-yO0)

* The inequalities describing the range of the clipping window which is
used to determine the intersections between the line and the clip
window.

e xwmax <= X0 + u(x1-x0) <= xwmin

 ywmax <= y0 + u(y1l-y0) <= ywmin

: :
» y o » N .
. :
" tal J
B . . - -
B o > F B -~
g . , Y \
- . -
, . 3 : : .
i p ¥ ¥ : .
Byt s & .
.
. O o | 3
- - . V ‘
-
i)
. . =
- - «) 7Y < .
‘ ¢
: . 1 . | 4 s A . i
Nbam A . ;) . .
: ’ ’
- I — . e - : . . ; .
" - ' ‘ " :
. " f B ”»
» . . . o | . . . P
3 : X ' L F =
. . -

Liang-Barsky Algorithm

* Numerical

* Find visible portion of the line
between points

* P1(x0,y0) = (6,12)
e P2(x1,y1) = (24,18)

* P1(x0,y0) = (12,30)
* P2(x1,y1) =(16,4)

(10,20)

(10,10)

(20,20)

(20,10)

Polygon Clipping

Polygon Clipping

Polygon Clipping

Polygon Clipping

* For polygon clipping, we require an
algorithm that will generate one or
more closed areas that are then scan
converted for the appropriate area fill.

* What we really want to display is a
bounded area after clipping.

Badaore Clipping

After Clhipping

Sutherland Hodgeman Polygon Clipping

* Beginning with the initial set of polygon vertices, we could first clip
the polygon against the left rectangle boundary to produce a new
sequence of vertices.

* The new set of vertices could then k successively passed to a right
boundary clipper, a bottom boundary clipper, and a top boundary
clipper.

|_)I glr|" C'H)

Chp
Polygon Lef Right Bottom

- 5
v v

Four Cases Out-In, In-In, In-out, Out-out

outr—oun
save none

out —In
save V,, V.,

Figure 6-20
Successive processing of pairs of polygon vertices against the left window boundary.

Sutherland Hodgeman Polygon Clipping

As each pair of adjacent polygon vertices is passed to a window boundary clipper,
we make the following tests:

(1) Out-In - If the first vertex Is outside the window boundary and the second
vertex is inside, both the intersection point of the polygon edge with the window
boundary and the second vertex are added to the output vertex list.

(2) In-In If both input vertices are inside the window boundary, only the second
vertex Is added to the output vertex list.

(3) In-Out- If the first vertex iIs inside the window boundary and second vertex is
outside the boundary, only the edge intersection with the window boundary is
added to the output vertex list.

(4) Out-Out- If both input vertices are outside the window boundary, nothing is
added to the output list.

Example

sr o~

-

e

(4—‘ e "',

CURAIIR M

O ORDER. oF EvgES 13 DecipEr AS LRBT o8 awy orope as

RBLT
CT1EPS y @ G/
N
~
\)
P
i
. v :
Bypove uvPP"j LEET Jipp™y RIeNT a:a'/pb-)
@ ®

SoTTOM b',rb) TOP Uippivy Ape *"‘J

CASE XL
\
- CHAIE 2
\l\' v | 2
o T M o SEFRR
' invide : : h:*)
V. ' et il - va.* ! :
Povtmant- o 0 VF <y e ;
Ol P < Irrers P T LA
5 .;cr #3:5:-:5.- mwm, N = oul
Vi Yoo Of/Pw=» tnkv'tuiba (d 5
)
CASE 3
o S CASE
." oV ! Yo‘ i “
e (hmsidt . : R
g : : o™ |t e
R [:
Movement —» fn — in Yo LD
O/P —> Dusbination Vevhor semadt
V:_ 0/’-’ »D.

Q) CLP POLVYGON ABCDE AGMNST ININDOW PAKS The CO-
ORDINATES OF THE PourG oN #RE A2, .)00), Rl az0, 1200,

: ('S"),Ioo\)' o(100, 3") , E('9, 120) COCROINATES o8 THE wWindied ME
F(ZCO (C'> " a.ftﬁ~ ’m/), R (""“C':"S‘(J. _{’/fclrfjj

—_-;';-097EP g » Por THE PoINTS

o 3:.;‘3 (A mav, ‘Jnﬂx)
v — ~
7
(‘ﬁiu | ‘1.-;*) \

(""" ! ﬁ'm‘a)

62) CLP PorvgoN AGCODE AGHNST pinedw) PARS The ¢O-
OROINATES OF THE POUrGON #RE A(20,900), 8220, 120D,

¢ (159,100) . 0100, 30) ; E(10.120). co-otINMES of THE win 8
P 200, s0) ; (57, (o) R{200,150), ¢(50,1°)

==>0%1Er 1 PoT TRE POINTS <
. ("h-lo 1_) A ' “)
.’.\‘; ,@,JJ) (1&“03“
B R “aoe, 1
o(;zo,\u’)
E(m0)
/’30'0.9) P (200,50)

—
® ® 9 o »

S % % % 9% e ® O W §tENeT . . »
OSTEP 2: CUPPING plinineT

™ Wi

LEGT EDGE OF THE commdul UN¥NG
'Ei" ’[.'(-fF‘

VERTEX LASE o/P

QSTEP 3! RigkT CLPPING

VELTEX CASE O/ p

- - - - - - - L

§ON AGCODE AGMNST Ninpdw) PARS The AR
-ﬂ . y B ') nd B
HE POYGON #RE A(20,900),8(220, 1200, ORTELZ: CUPPNG AUNMNST LegT Enve of T &b
'Oo. 30) v E('o',?()) Co.c.).)INA?F(J 6‘ THE WiNg ’_,e[(L IPPER
(s, 1r0) R (200,150, ¢ co,50)
NTS ‘
Por THE Pol . ’EfBEX CASE o/p
A ! In=% n 8
8(- in-’l'n ¢
D nin D
DE n-—pour D' Nw
- ee3
EA ovh -t E‘A ch

C RIGHT CUPPING
VELTEX CASE O/ p

AB in-’fw? Al Newd
BC oF2in BIC T geptiteh

LD a2 D
po' in-ain o'
p‘g 'indin E'
E‘A '» -?"n A

FON ACCDE AGAMNST byinpdw
THE POYGON #RE A(20,900), B¢ 220, 120D
100, 32) ; E(10,120). co-ctoinpres
B(5P,10) R {200,150), ¢f cp,50)
Por THE POINTS

PARS The

0L THE wWiNoDW ¢

(lm-v"}"‘"‘)
(;oo,ttb>

8 (2329 o)

BorTom u,;/’va
VERTEX cME o/P
AL’ in = In Al
Al g‘ in =>in '
B'C in=»in c
Al in —70u c ! N‘“’w
DD " og?‘—h'n p" D' yel™
Q\‘L:'—: N in E'
E & in =dIn A
- TOP cuipPing
v:?er'a CALE o/pP
lﬂ , ouF=in pup!
g'cg nin g!
e n-oin &
C,on ‘\"'“ c \
Chny maain pn
D' D' — f“ D, ”w S
o'E M ' e' Ww‘“ .

90N ABCOE AGMNST ninpow) pPaRS
THE POUIGON #RE A(20,900), B(220, |
100, 30) B E(10,120) CO-OROINATES oL TH:
(50,10) R (200,150); ¢ co,r°)

PLoT THE POINTS

(20 ,309)

- l‘
\" A
- v
< -
ARE NI PR

Weiler And Atherton Polygon Clipping

References

* https://www.youtube.com/watch?v=RGSn|K4-Bhl
* https://www.cs.helsinki.fi/group/goa/viewing/leikkaus/lineClip.html

For Liang Barsky Algorithm

* https://www.youtube.com/watch?v=N5Sxg3kuc 0 Weiler And
Atherton Polygon Clipping

* https://www.youtube.com/watch?v=LCMyWFxeuro&list=PLsyTs|IBOa4
NwekHdOyE1Dg8eV4llsyyd7

https://www.youtube.com/watch?v=RGSnlK4-BhI
https://www.cs.helsinki.fi/group/goa/viewing/leikkaus/lineClip.html
https://www.youtube.com/watch?v=N5Sxq3kuc_0

