
RCS-302

16/08/19
Department of Computer Science &

Engineering
1

COMPUTER
ORGANIZATION

& ARCHITECTURE

Faculties :
1. Mr. Ravi Tiwari (Subject Coordinator)
2. Mr. Gaurav Rajput
3. Mr. Paras Bassi
4. Mr. Vimal Singh

UNIT 1
Introduction to Computer

Organization

16/08/19
Department of Computer Science &

Engineering
2

COMPUTER
ORGANIZATION

& ARCHITECTURE

VISION
To develop competent IT professionals catering to the needs of
Industry and society in a global perspective.

MISSION
To attain academic & professional excellence with
collective efforts of all stake holders through:
M1: Dissemination of basic concepts and analytical skills.
M2: Exposure to new tools in the area of Information
technology.
M3: Effective interaction with industry for better
employability.
M4: Inculcating values and professional ethics with social
responsibility.

Department of Computer Science &
Engineering

316/08/19
Department of Computer Science &

Engineering

 Arithmetic
 Signed and unsigned numbers
 Addition and Subtraction
 Logical operations
 ALU: arithmetic and logic unit
 Multiply
 Divide
 Floating Point

 notation
 add
 multiply

16/08/19 4
Department of Computer Science &

Engineering

Learning Objectives

The objectives of the following slide is to make
student aware about the :

 Arithmetic
 Signed and unsigned numbers
 Addition and Subtraction
 Logical operations
 ALU: Arithmetic and Logic Unit
 Multiply
 Divide
 Floating Point

516/08/19 Department of Computer Science &
Engineering

6

32

32

32

operation

result

a

b

ALU

Arithmetic

• Where we've been:
– Performance (seconds, cycles,

instructions)
– Abstractions:

 Instruction Set Architecture
 Assembly Language and Machine

Language

• What's up ahead:
– Implementing the Architecture

7

• Bits have no inherent meaning (no semantics)
• Decimal number system, e.g.:

4382 = 4x103 + 3x102 + 8x101 + 2x100

• Can use arbitrary base g; value of digit c at position i:
c x gi

• Binary numbers (base 2)
n-1 n-2 … 1 0

an-1 an-2 … a1 a0

2n-1 2n-2 … 21 20

• (an-1 an-2... a1 a0) two = an-1 x 2n-1 + an-2 x 2n-2 + … + a0 x 20

Binary numbers (1)

position

digit

weight

8

Binary numbers (2)

• So far numbers are unsigned
• With n bits 2n possible combinations

– a0 : least significant bit (lsb)

– an-1: most significant bit (msb)

1 bit 2 bits 3 bits 4 bits decimal value
 0 00 0000000 0
 1 01 0010001 1

10 0100010 2
11 0110011 3

1000100 4
1010101 5
1100110 6
1110111 7

1000 8
1001 9

9

• Binary numbers (base 2)
0000 0001 0010 0011 0100 0101 0110 0111 1000 1001...

decimal: 0...2n-1

• Of course it gets more complicated:
- numbers are finite (overflow)
- fractions and real numbers
- negative numbers

– e.g., no MIPS subi instruction;
– however, addi can add a negative number

How do we represent negative numbers?
i.e., which bit patterns will represent which
numbers?

Binary numbers (3)

TU/e Processor Design 5Z032 10

Conversion
• Decimaal -> binair

 Divide by 2 Remainder

• Hexadecimal: base 16. Octal: base 8
1010 1011 0011 1111two = ab3fhex

4382
2191 0
1095 1
547 1
273 1
136 1
68 0
34 0
17 0
8 1
4 0
2 0
1 0
0 1

 4382ten =
1 0001 0001 1110two

11

• Sign Magnitude: One's Complement Two's Complement

000 = +0 000 = +0 000 = +0
001 = +1 001 = +1 001 = +1
010 = +2 010 = +2 010 = +2
011 = +3 011 = +3 011 = +3
100 = -0100 = -3100 = -4
101 = -1101 = -2101 = -3
110 = -2110 = -1110 = -2
111 = -3111 = -0111 = -1

• Issues: balance, number of zeros, ease of
operations

• Which one is best? Why?

Signed binary numbers
Possible representations:

12

• 32 bit signed numbers:

0000 0000 0000 0000 0000 0000 0000 0000two = 0ten

0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten

0000 0000 0000 0000 0000 0000 0000 0010two = + 2ten

...
0111 1111 1111 1111 1111 1111 1111 1110two = + 2,147,483,646ten

0111 1111 1111 1111 1111 1111 1111 1111two = + 2,147,483,647ten

1000 0000 0000 0000 0000 0000 0000 0000two = – 2,147,483,648ten

1000 0000 0000 0000 0000 0000 0000 0001two = – 2,147,483,647ten

1000 0000 0000 0000 0000 0000 0000 0010two = – 2,147,483,646ten

...
1111 1111 1111 1111 1111 1111 1111 1101two = – 3ten

1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten

1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten

– Range [-2 31 .. 2 31 -1]

• (an-1 an-2... a1 a0) 2’s-compl = -an-1 x 2n-1 + an-2 x 2n-2 + … +
a0 x 20 = - 2n + an-1 x 2n-1 + …
 + a0 x 20

maxint

minint

Two’s complement

13

• Negating a two's complement number: invert

all bits and add 1

– remember: “negate” and “invert” are quite different!

• Proof:

 a + a = 1111.1111b = -1 d =>

 -a = a + 1

Two's Complement Operations

14

Two's Complement Operations

Converting n bit numbers into numbers with more than n bits:

– MIPS 8 bit, 16 bit values / immediates converted to 32 bits

• Copy the most significant bit (the sign bit) into the other bits

0010 -> 0000 0010

1010 -> 1111 1010

• MIPS "sign extension" example instructions:
lb load byte (signed)
lbu load byte (unsigned)
slti set less than immediate (signed)
sltiu set less than immediate (unsigned)

15

Addition & Subtraction

• Just like in grade school (carry/borrow 1s)
 0111 0111 0110

 + 0110 - 0110 - 0101

• Two's complement operations easy
– subtraction using addition of negative numbers

 0110 0110
 - 0101 + 1010

• Overflow (result too large for finite computer word):
– e.g., adding two n-bit numbers does not yield an n-bit

number
 0111
+ 0001 note that overflow term is somewhat misleading,

 1000 it does not mean a carry “overflowed”

16

• No overflow when adding a positive and a negative
number

• No overflow when signs are the same for subtraction

• Overflow occurs when the value affects the sign:
– overflow when adding two positives yields a negative
– or, adding two negatives gives a positive
– or, subtract a negative from a positive and get a negative
– or, subtract a positive from a negative and get a positive

• Consider the operations A + B, and A – B
– Can overflow occur if B is 0 ?
– Can overflow occur if A is 0 ?

Detecting Overflow

17

• When an exception (interrupt) occurs:
– Control jumps to predefined address for exception

(interrupt vector)
– Interrupted address is saved for possible resumption in

exception program counter (EPC); new instruction: mfc0
(move from coprocessor0)

– Interrupt handler handles exception (part of OS).
registers $k0 and $k1 reserved for OS

• Details based on software system / language
– C ignores integer overflow; FORTRAN not

• Don't always want to detect overflow
— new MIPS instructions: addu, addiu, subu
note: addiu and sltiu still sign-extends!

Effects of Overflow

18

Logic operations

• Sometimes operations on individual bits needed:

Logic operation C operationMIPS instruction
Shift left logical << sll
Shift right logical >> srl
Bit-by-bit AND & and, andi
Bit-by-bit OR | or, ori

• and and andi can be used to turn off some bits;
or and ori turn on certain bits

• Of course, AND en OR can be used for logic
operations.
– Note: Language C’s logical AND (&&) and OR (||) are

conditional

• andi and ori perform no sign extension !

19

• Let's build an ALU to support the andi and
ori instructions
– we'll just build a 1 bit ALU, and use 32 of them

b

a

operation

result

An ALU (arithmetic logic unit)

20

• Selects one of the inputs to be the output, based
on a control input

• Lets build our ALU and use a MUX to select the
outcome for the chosen operation

S

C
A

B
0

1

Review: The Multiplexor

note: we call this a 2-input mux
 even though it has 3 inputs!

21

• Not easy to decide the “best” way to build
something
– Don't want too many inputs to a single gate
– Don’t want to have to go through too many gates
– For our purposes, ease of comprehension is important

• Let's look at a 1-bit ALU for addition (= full-adder):

Different Implementations

cout = a b + a cin + b cin

sum = a xor b xor cin

 How could we build a 1-bit ALU for add, and, and or?
 How could we build a 32-bit ALU?

CarryOut

CarryIn

Sum
a

b

+

22

Building a 32 bit ALU

b

0

2

Result

Operation

a

1

CarryIn

CarryOut

Result31
a31

b31

Result0

CarryIn

a0

b0

Result1
a1

b1

Result2
a2

b2

Operation

ALU0

CarryIn

CarryOut

ALU1

CarryIn

CarryOut

ALU2

CarryIn

CarryOut

ALU31

CarryIn

23

• Two's complement approach: just
negate b and add

• How do we negate?

• A very clever solution:

What about subtraction (a – b) ?

0

2

Result

Operation

a

1

CarryIn

CarryOut

0

1

Binvert

b

24

ALU symbol

ALU

zero

result

overflow

operation

a

b

carry-out

32

32

32

25

Conclusions

• We can build an ALU to support the MIPS instruction set
– key idea: use multiplexor to select the output we want

– we can efficiently perform subtraction using two’s
complement

– we can replicate a 1-bit ALU to produce a 32-bit ALU

• Important points about hardware
– all of the gates are always working

• not efficient from energy perspective !!

– the speed of a gate is affected by the number of connected
outputs it has to drive (so-called Fan-Out)

– the speed of a circuit is affected by the number of gates in
series

(on the “critical path” or the “deepest level of logic”)
• Unit of measure: FO4 = inverter with Fan-Out of 4

• P4 (heavily superpipelined) has about 15 FO4 critical path

26

• Is a 32-bit ALU as fast as a 1-bit ALU?
• Is there more than one way to do addition?

– Two extremes: ripple carry and sum-of-products
– How many logic layers do we need for these two extremes?

Can you see the ripple? How could you get rid of it?

c1 = b0c0 + a0c0 + a0b0

c2 = b1c1 + a1c1 + a1b1 c2 = (..subst c1..)
c3 = b2c2 + a2c2 + a2b2 c3 =
c4 = b3c3 + a3c3 + a3b3 c4 =

Not feasible! Why not?

Problem: Ripple carry adder
is slow

27

• An approach in-between our two
extremes

• Motivation:
– If we didn't know the value of carry-in,

what could we do?
– When would we always generate a

carry? gi = ai bi

– When would we propagate the carry?
 pi = ai + bi

Carry-lookahead adder (1)

Cin

Cout
Cout = Gi + Pi Cin

a

b

28

Carry-lookahead adder (2)

• Did we get rid of the ripple?

c1 = g0 + p0c0

c2 = g1 + p1c1 c2 = g1 + p1(g0 + p0c0)

c3 = g2 + p2c2 c3 =
c4 = g3 + p3c3 c4 =

 Feasible ?
a0
b0
a1
b1
a2
b2
a3
b3

Cin

P0

G0

ALU

Result0-34

P0 = p0.p1.p2.p3

G0= g3+(p3.g2)+(p3.p2.g1)+(p3.p2.p1.g0)

29

• Use principle to build
bigger adders

• Can’t build a 16 bit
adder this way... (too
big)

• Could use ripple carry of
4-bit CLA adders

• Better: use the CLA
principle again!

C arr y-l ookahead ad d er (3)

CarryIn

Result0--3

ALU0

CarryIn

Result4--7

ALU1

CarryIn

Result8--11

ALU2

CarryIn

CarryOut

Result12--15

ALU3

CarryIn

C1

C2

C3

C4

P0
G0

P1
G1

P2
G2

P3
G3

pi
gi

pi + 1
gi + 1

ci + 1

ci + 2

ci + 3

ci + 4

pi + 2
gi + 2

pi + 3
gi + 3

a0
b0
a1
b1
a2
b2
a3
b3

a4
b4
a5
b5
a6
b6
a7
b7

a8
b8
a9
b9

a10
b10
a11
b11

a12
b12
a13
b13
a14
b14
a15
b15

Carry-lookahead unit

30

• More complicated than addition
– accomplished via shifting and addition

• More time and more area
• Let's look at 3 versions based on gradeschool

algorithm

 0010 (multiplicand)

__*_1011 (multiplier)

• Negative numbers: convert and multiply
– there are better techniques, we won’t look at them now

Multiplication (1)

31

Multiplication (2)

Done

1. Test
Multiplier0

1a. Add multiplicand to product and
place the result in Product register

2. Shift the Multiplicand register left 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

64-bit ALU

Control test

Multiplier
Shift right

Product
Write

Multiplicand
Shift left

64 bits

64 bits

32 bits

First implementation
Product initialized to 0

32

Multiplication (3)

Multiplier
Shift right

Write

32 bits

64 bits

32 bits

Shift right

Multiplicand

32-bit ALU

Product Control test

Done

1. Test
Multiplier0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

3. Shift the Multiplier register right 1 bit

32nd repetition?

Start

Multiplier0 = 0Multiplier0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Second version

33

Multiplication (4)

Control
testWrite

32 bits

64 bits

Shift right
Product

Multiplicand

32-bit ALU

Done

1. Test
Product0

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

2. Shift the Product register right 1 bit

32nd repetition?

Start

Product0 = 0Product0 = 1

No: < 32 repetitions

Yes: 32 repetitions

Final version
Product initialized with multiplier

34

Fast multiply: Booth’s Algorithm

• Exploit the fact that: 011111 = 100000 - 1
Therefore we can replace multiplier, e.g.:

0001111100 = 0010000000 - 100

• Rules:
Current
bit

Bit to the
right

Explanation Operation

1 0 Begin 1s Subtract
multiplicand

1 1 Middle of 1s nothing

0 1 End of 1s Add
multiplicand

0 0 Middle of 0s nothing

35

Booth’s Algorithm (2)

• Booth’s algorithm works for signed
2’s complement as well (without
any modification)

• Proof: let’s multiply b * a
(ai-1 - ai) indicates what to do:

0 : do nothing
+1: add b
-1 : subtract

We get b*a =

This is exactly what we need !





 












i

i
i

i
i

i
i

aab

baa

22

2)(

30

0

31
31

31

0
1

36

Division

• Similar to multiplication: repeated
subtract

• The book discusses again three
versions

37

Divide (1)

• Well known algorithm:
 Dividend
Divisor 1000/1001010\1001 Quotient
 -1000
 10

 101
 1010
 -1000
 10 Remainder

38

Division (2)

• Implementation:

64-bit ALU

Control test
Write

64 bits

64 bits

32 bits

Divisor
Shift right

Remainder

Quotient
Shift left

Start

1. Substract the Divisor register from the
Remainder register and place the
result in the Remainder register

Test Remainder

2.a Shift the Quotient register
to the left, setting the
rightmost bit to 1

2.b Restore the original value by
adding the Divisor register. Also,
shift a 1 into the Quotient register

Shift Divisor Register right 1 bit

Done

33rd repetition?

>= 0 < 0

yes

no

39

Multiply / Divide in MIPS

• MIPS provides a separate pair of 32-bit registers for
the result of a multiply and divide: Hi and Lo

mult $s2,$s3 # Hi,Lo = $s2 * $s3
div $s2,$s3 # Hi,Lo = $s2 mod $s3,
$s2 / $s3

• Copy result to general purpose register
mfhi $s1 # $s1 = Hi
mflo $s1 # $s1 = Lo

• There are also unsigned variants of mult and div:
multu and divu

40

Shift instructions

• sll
• srl
• sra

• Why not ‘sla’ instruction ?

Shift: a quick way to multiply and divide with
power of 2 (strength reduction). Is this always
allowed?

41

Floating Point (a brief look)

• We need a way to represent
– numbers with fractions, e.g., 3.1416

– very small numbers, e.g., .000000001

– very large numbers, e.g., 3.15576  109

• Representation:
– sign, exponent, significand: (–1)sign significand 

2exponent

– more bits for significand gives more accuracy

– more bits for exponent increases range

• IEEE 754 floating point standard:
– single precision : 8 bit exponent, 23 bit significand

– double precision: 11 bit exponent, 52 bit significand

42

IEEE 754 floating-point standard

• Leading “1” bit of significand is implicit

• Exponent is “biased” to make sorting easier
– all 0s is smallest exponent all 1s is largest
– bias of 127 for single precision and 1023 for double

precision
– summary: (–1)sign significand) 2exponent – bias

• Example:
– decimal: -.75 = -3/4 = -3/22

– binary : -.11 = -1.1 x 2-1

– floating point: exponent = -1+bias = 126 = 01111110
– IEEE single precision:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
 1 0 1 1 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43

Floating Point Complexities

• Operations more complicated: align, renormalize, ...

• In addition to overflow we can have “underflow”

• Accuracy can be a big problem
– IEEE 754 keeps two extra bits, guard and round, and

additional sticky bit (indicating if one of the remaining bits
unequal zero)

– four rounding modes

– positive divided by zero yields “infinity”

– zero divide by zero yields “not a number”

– other complexities

• Implementing the standard can be tricky
• Not using the standard can be even worse

– see text for description of 80x86 and Pentium bug!

44

Conversion: decimal  IEEE
754 FP

• Decimal number (base 10)
123.456 = 1x102+2x101+3x100+4x10-1+5x10-2+6x10-3

• Binary number (base 2)
101.011 = 1x22+0x21+1x20+0x2-1+1x2-2+1x2-3

• Example conversion: 5.375
– Multiply with power of 2, to get rid of fraction:

5.375 = 5.375x16 / 16 = 86 x 2-4

– Convert to binary, and normalize to 1.xxxxx
86 x 2-4 = 1010110 x 2-4 = 1.01011 x 22

– Add bias (127 for single precision) to exponent:
exponent field = 2 + 127 = 129 = 1000 0001

– IEEE single precision format (remind the leading “1” bit):

sign exponent significand

0 10000001 01011000000000000000000

Assignment
1

Q1. What is Computer Architecture?

Q2. Convert the number (-16.125) into IEEE 754 single precision
format.

Q3. Discuss about hardware used for signed operand
multiplication.

Q4. Explain advantages and disadvantages of daisy chaining and
polling bus arbitration scheme.

Q5.Discuss the importance of Array Multiplier. Explain your
answer with a 3 bit to 2 bit array multipliers.

Tutorial 1

Q1. Convert the following arithmetic expressions from infix to reverse
polish notation

i) A* B + C * D + E * F

ii) AB + A (BD + CE)

Q2. Convert the number (-16.125) into IEEE 754 single precision format.

Q3.Explain the floating-point addition/subtraction algorithm with flow
chart.

Q4. What do you mean by Array Multiplier? Explain 3bit by 2 bit array
multiplier.

Q5. What do you mean by Booth’s Algorithm? Discuss the required
hardware and iterate your algorithm for the product (+8)*(-3).

Outcomes

After reading above topics students will be
able to:

• An ability to apply the knowledge of mathematics, science, and

engineering in the field of Information Technology for the

solution of engineering problems.

• Design solutions for complex engineering problems and design
system components or processes that meet the specified needs
with appropriate consideration for the public health and safety,
and the cultural, societal, and environmental considerations.

4716/08/19

UNIT 2
Instructions Cycle &

Control Unit

16/08/19
Department of Computer Science &

Engineering
48

COMPUTER
ORGANIZATION

& ARCHITECTURE

 Instructions
• Types & Format

 Cycles
 Control Unit

 Hardwired
 Microprogram

16/08/19 49
Department of Computer Science &

Engineering

Learning Objectives

The objectives of the following slide is to make
student aware about the :

 Instructions & their types .
 Instruction Cycles
 Control Unit

 Hardwired
 Microprogram

5016/08/19 Department of Computer Science &
Engineering

INSTRUCTION

5116/08/19 Department of Computer Science &
Engineering

Instruction is command which is given
by the user to computer.

Instruction cycle

5216/08/19 Department of Computer Science &
Engineering

• The time period during which one instruction
is fetched from memory and execute when a
computer given an instruction in machine
language.

• Each instruction is further divided into
sequence of phases.

• After the execution the program counter is
incremented to point to the next instruction.

Phases

5316/08/19 Department of Computer Science &
Engineering

• Fetch an instruction from memory
• Decode the instruction
• Execute the instruction

Fetch cycle

• In this phase the sequence counter is
initialized to 0.

• The address of first instruction from
PC is loaded into address register
during the first clock cycle.

16/08/19
54

The Fetch Cycle

• Consists of three time units and four micro-
operations.

• Each micro-operation involves the movement of
data into or out of a register.

IRMDR

PCPCt

MDRMEMORYt

MARPCt







1:

:

:

3

2

1

Decode cycle

16/08/19
56

• The instruction is decoded by
the instruction decoder of a
processor.

• All the bits of the instruction
under execution stored in IR are
analyzed and decode in third
clock cycle.

16/08/19
57

Micro-operations

• Are the functional, or
atomic, operations of
a processor.

• A single micro-
operation generally
involves a transfer
between registers,
transfer between
registers and external
bus, or a simple ALU
operation.

Micro-operations and the Clock

• Each clock pulse defines a time unit, which are of
equal duration.

• Micro-operations are performed within this time
unit.

• If multiple micro-operations do not interfere with
one another then grouping of micro-operations
can be performed within one time unit.

• Grouping can be performed as long as;
– Proper sequence of events are followed

• PC  MAR must be done first in order for MEMORY  MDR

– Conflicts are avoided
• MEMORY  MDR can not be in the same time unit as MDR 

IR

The Indirect Cycle

• Occurs if the instruction specifies an indirect
address.

• Consists of three time unit and three micro-
operations.

• Data is transferred to the MAR from the IR, which
is used to fetch the address of the operand, the IR
is then updated from MDR so it contains a direct
address rather than indirect.

IRMDRt

MDRMEMORYt

MARIRt






:

:

:

3

2

1

Types of Micro-operation

• Transfer data between registers

• Transfer data from register to external

• Transfer data from external to register

• Perform arithmetic or logical operations

Functions of Control Unit
• Sequencing

Causes the processor to step through a series of micro-operations

• Execution
Causes the performance of each micro-operation

• This is done using Control Signals

Model of Control Unit

Control Signals - Input

• Clock
– One micro-instruction (or set of simultaneous micro

instructions) per clock pulse.

• Instruction register
– Op-code of the current instruction
– Determines which micro-instructions are performed

• Flags
– Determines the status of the processor
– Results of previous ALU operations

• Control Signals from control bus
– Interrupts
– Acknowledgements

Data Paths and Control Signals

PROCESSOR ORGANIZATION

• Organization is how features are
implemented
– Control signals, interfaces, memory

technology.
– e.g. Is there a hardware multiply unit or

is it done by repeated addition

Internal Organization

• Usually a single internal bus
• Using single bus simplifies & saves space
• Gates control movement of data onto

and off the bus
• Control signals control data transfer to

and from external systems bus
• Temporary registers needed for proper

operation of ALU

Hardwired Implementation

• Control unit inputs
• Flags and control bus

– Each bit means something
• Instruction register

– Op-code causes different control signals
for each different instruction

– Decoder takes encoded input and
produces single output

– n binary inputs and 2n outputs

Control Unit with Decoded
Inputs

Hardwired Logic

• Logic Gates Hardwired Internally
– Functions predefined
– Truth Tables
– Boolean Logic used to define timing
– Connect Instructions
– Unique logic for each set of op-codes

Problems With Hard Wired Designs

• Complex sequencing & micro-
operation logic

• Difficult to design and test
• Inflexible design
• Difficult to add new instructions

Assignment 2

Q1. List and explain different type of shift micro operation.

Q2. Draw the flow chart for the execution of a complete instruction in a basic
computer.

Q3. An instruction format, there are 16 bits in an instruction word. Bit 0 to 11
convey the address of memory location for memory related instructions. For
non-memory instructions these bits convey various registers or I/O operations.
Bits 12 to 14 show the various memory operations such as AND, ADD, LDA
etc. Bit 15 shows if the memory accessed directly or indirectly. For such an
instruction format draw the block diagram of control unit of a computer and
briefly explain how an instruction decoded and executed by this control unit.

Q4. What is subroutine call ? Explain with an example.

Q5. What is micro instruction. Explain the working of micro program
sequencer with diagram.

Tutorial 2

Q1. Write a program to evaluate the arithmetic statement

 X=(A-B+C*(D*E-F))/(G+H*K)

i. Using a general register computer with one address instructions.

 ii. Using an accumulator type computer with zero address instruction.

Q2. An instruction is stored at location 300 with its adder field at 301
with its adder field at 301. The adder field has the value 400. A processor
register R1 contains the number 200. Evaluate the effective address if the
addressing mode of the instruction is: i) Direct ii) Immediate iii)
Relative

Q3. What is addressing mode? Explain different types with diagram.

Q4. Differentiate horizontal and vertical microprogramming .

Q5. What is control word?

Outcomes

After reading above topics students will be
able to:

• Design solutions for complex engineering problems and design
system components or processes that meet the specified needs
with appropriate consideration for the public health and safety,
and the cultural, societal, and environmental considerations.

7316/08/19

UNIT 3
Memory Organization

16/08/19
Department of Computer Science &

Engineering
74

COMPUTER
ORGANIZATION

& ARCHITECTURE

 Memory
 Types
 Concepts
 Hierarchy

 RAM Organization
 Cache Memory & Performance
 Mapping Techniques
 Virtual Memory

16/08/19 75
Department of Computer Science &

Engineering

Learning Objectives

The objectives of the following slide is to make
student aware about the :

 Memory Types, Concepts, Hierarchy
 RAM Organization
 Cache Memory & Performance
 Mapping Techniques
 Virtual Memory Implementation

7616/08/19 Department of Computer Science &
Engineering

Multiple-Chip SRAM

Fig. 17.2 Eight 128K  8 SRAM chips forming a 256K  32 memory unit.

/

WE

 CS

 OE

 D in
 D out

 Addr

WE

 CS

 OE

 D in
 D out

 Addr

WE

 CS

 OE

 D in
 D out

 Addr

WE

 CS

 OE

 D in
 D out

 Addr

WE

 CS

 OE

 D in
 D out

 Addr

WE

 CS

 OE

 D in
 D out

 Addr

WE

 CS

 OE

 D in
 D out

 Addr

18

/

17

32
 WE

 CS

 OE

 D in
 D out

 Addr

Data
in

Data out,
byte 3

Data out,
byte 2

Data out,
byte 1

Data out,
byte 0

MSB

Address

SRAM with Bidirectional Data Bus

Fig. 17.3 When data input and output of an SRAM chip
are shared or connected to a bidirectional data bus, output
must be disabled during write operations.

/
 h

/

g

Write enable

 Data in/out

Chip select

Output enable

 Address
 Data in Data out

DRAM and Refresh Cycles

DRAM vs. SRAM Memory Cell Complexity

Fig. 17.4 Single-transistor DRAM cell, which is considerably simpler than
SRAM cell, leads to dense, high-capacity DRAM memory chips.

Word line

Capacitor

Bit
line

Pass
transistor

Word line

Bit
line

Compl.
bit
line

Vcc

(a) DRAM cell (b) Typical SRAM cell

Bridging the CPU-Memory Speed Gap

Idea: Retrieve more data from memory with each access

Fig. 17.9 Two ways of using a wide-access memory to bridge
the speed gap between the processor and memory.

Wide-
access

memory

.

.

.

Narrow bus
to

processor
Mux

Wide-
access

memory

 .
 .
 .

Wide bus
to

processor

.

.

.
Mux

(a) Buffer and mult iplexer
 at the memory side

(a) Buffer and mult iplexer
 at the processor side

 .
 .
 .

Nonvolatile Memory

ROM
PROM

EPROM

Read-only memory organization, with the fixed

contents shown on the right.

B i t l i n e s

Word
lines

Word contents

1 0 1 0

1 0 0 1

0 0 1 0

1 1 0 1

S u p p l y v o l t a g e

The Need for a Memory Hierarchy

The widening speed gap between CPU and main memory

Processor operations take of the order of 1 ns

Memory access requires 10s or even 100s of ns

Memory bandwidth limits the instruction execution rate

 Each instruction executed involves at least one memory access

 Hence, a few to 100s of MIPS is the best that can be achieved

 A fast buffer memory can help bridge the CPU-memory gap

The fastest memories are expensive and thus not very large

 A second (third?) intermediate cache level is thus often used

Nov. 2014
Computer Architecture, Memory System
Design

Slide 83

Typical Levels in a Hierarchical Memory

Fig. 17.14 Names and key characteristics of levels in a memory hierarchy.

Tertiary
Secondary

Main

Cache 2

Cache 1

Reg’s $Millions
$100s Ks

$10s Ks

$1000s

$10s

$1s

Cost per GB Access latency Capacity

TBs
10s GB

100s MB

 MBs

 10s KB

 100s B

min+
10s ms

100s ns

10s ns

 a few ns

 ns

Speed
gap

Nov. 2014
Computer Architecture, Memory System
Design

Slide 84

Cache Memory Organization

 Processor speed is improving at a faster rate than memory’s
• Processor-memory speed gap has been widening
• Cache is to main as desk drawer is to file cabinet

Cache, Hit/Miss Rate, and Effective Access
Time

One level of cache with hit rate h

Ceff = hCfast + (1 – h)(Cslow + Cfast) = Cfast + (1 – h)Cslow

CPU
Cache
(fast)

memory

Main
(slow)

memory

 Reg
file

Word

Line

Data is in the cache
fraction h of the time
(say, hit rate of 98%)

Go to main 1 – h of the time
(say, cache miss rate of 2%)

Cache is transparent to user;
transfers occur automatically

Multiple Cache Levels

Fig. 18.1 Cache memories act as intermediaries between
the superfast processor and the much slower main memory.

Cleaner and
easier to analyze

Level-2
cache

Main
memory

CPU CPU
registers

Level-1
cache

Level-2
cache

Main
memory

CPU CPU
registers

Level-1
cache

(a) Level 2 between level 1 and main (b) Level 2 connected to “backside” bus

Cache Memory Design Parameters

Cache size (in bytes or words). A larger cache can hold more of the
program’s useful data but is more costly and likely to be slower.

Block or cache-line size (unit of data transfer between cache and main).
With a larger cache line, more data is brought in cache with each miss.
This can improve the hit rate but also may bring low-utility data in.

Placement policy. Determining where an incoming cache line is stored.
More flexible policies imply higher hardware cost and may or may not
have performance benefits (due to more complex data location).

Replacement policy. Determining which of several existing cache blocks
(into which a new cache line can be mapped) should be overwritten.
Typical policies: choosing a random or the least recently used block.

Write policy. Determining if updates to cache words are immediately
forwarded to main (write-through) or modified blocks are copied back to
main if and when they must be replaced (write-back or copy-back).

What Makes a Cache Work?

Assuming no conflict in address
mapping, the cache will hold a
small program loop in its entirety,
leading to fast execution.

Temporal locality
Spatial locality

9-instruction
program loop

Address mapping
(many-to-one)

Cache
memory

Main
memory

Cache line/block
(unit of t rans fer
between main and
cache memories)

Direct-Mapped Cache

Fig. 18.4 Direct-mapped cache holding 32 words within eight 4-word lines.
Each line is associated with a tag and a valid bit.

3-bit line index in cache

2-bit word offset in line Main
memory
locations

0-3
4-7

8-11

36-39
32-35

40-43

68-71
64-67
72-75

100-103
96-99
104-107

Tag
Word

address

 Valid bits

Tags

Read tag and
specified word

Com-
pare

 1,Tag

Data out

 Cache miss

 1 if equal

Accessing a Direct-Mapped Cache

Example

Fig. 18.5 Components of the 32-bit address in an example
direct-mapped cache with byte addressing.

Show cache addressing for a byte-addressable memory with 32-bit
addresses. Cache line W = 16 B. Cache size L = 4096 lines (64 KB).

Solution

Byte offset in line is log216 = 4 b. Cache line index is log24096 = 12 b.

This leaves 32 – 12 – 4 = 16 b for the tag.

12-bit line index in cache

4-bit byte offset in line

Byte address in cache

16-bit line tag

32-bit
address

Set-Associative Cache

Two-way set-associative cache holding 32 words of data within
4-word lines and 2-line sets.

Main
memory
locations

0-3

16-19

32-35

48-51

64-67

80-83

96-99

112-115

 Valid bits

Tags

 1

 0

2-bit set index in cache

2-bit word offset in line

Tag

Word
address

 Option 0

Option 1

Read tag and specified
word from each option

Com-
pare

1,Tag

Com-
pare

Data
out

 Cache

miss

1 if equal

Accessing a Set-Associative Cache

Example

Components of the 32-
bit address in an
example two-way set-
associative cache.

Show cache addressing scheme for a byte-addressable memory with
32-bit addresses. Cache line width 2W = 16 B. Set size 2S = 2 lines.
Cache size 2L = 4096 lines (64 KB).

Solution

Byte offset in line is log216 = 4 b. Cache set index is (log24096/2) = 11 b.

This leaves 32 – 11 – 4 = 17 b for the tag.
11-bit set index in cache

4-bit byte offset in line

Address in cache used to
read out two candidate

items and their control info

17-bit line tag

32-bit
address

Disk Memory Basics

Disk memory elements and key terms.

Track 0
Track 1

Track c – 1

Sector

Recording area

Spindle

Direction of
rotation

Platter

Read/write head

Actuator

Arm

Track 2

Disk Drives

Typically

2 - 8 cm

Typically
2-8 cm

Access Time for a Disk

The three components of disk access time. Disks that spin faster
have a shorter average and worst-case access time.

1. Head movement
from current position
to desired cylinder:
Seek time (0-10s ms)

Rotation

2. Disk rotation until the desired
sector arrives under the head:
Rotational latency (0-10s ms)

3. Disk rotation until sector
has passed under the head:
Data transfer time (< 1 ms)

Sector

1
2

3

Disk Performance

Reducing average seek time and rotational latency by
performing disk accesses out of order.

Seek time = a + b(c – 1) + (c – 1)1/2

Average rotational latency = (30 / rpm) s = (30 000 / rpm) ms

Arrival order of
access requests:

A, B, C, D, E, F

Possible out-of-
order reading:

C, F, D, E, B, A

A

B

C

D

E
F

Rotation

Nov. 2014
Computer Architecture, Memory System
Design

Slide 97

The Need for Virtual Memory

Program segments in main memory and on disk.

Program and
data on several
disk tracks

System

Stack

Active pieces
of program and
data in memory

Unused
space

Nov. 2014
Computer Architecture, Memory System
Design

Slide 98

Fig. Data movement in a memory hierarchy.

Memory Hierarchy: The Big Picture

 Pages
 Lines

 Words

 Registers

 Main memory

 Cache

 Virtual
memory

 (transferred
explicitly

via load/store)
 (transferred
automatically

upon cache miss)
 (transferred
automatically

upon page fault)

Address Translation in Virtual Memory

Fig.Virtual-to-physical address translation parameters.

Example
Determine the parameters in Fig. 20.3 for 32-bit virtual addresses,
4 KB pages, and 128 MB byte-addressable main memory.

Solution: Physical addresses are 27 b, byte offset in page is 12 b;
thus, virtual (physical) page numbers are 32 – 12 = 20 b (15 b)

 Virtual
address

 Physical
address

 Physical page number

 Virtual page number Offset in page

 Offset in page

Address translation

 P bits

 P bits

 V  P bits

 M  P bits

Page Tables and Address Translation

Fig. The role of page table in the virtual-to-physical
address translation process.

 Page table

 Main memory

 Valid
bits

 Page table
register

 Virtual
page

number

 Other
f lags

Protection and Sharing in Virtual Memory

Fig. Virtual memory as a facilitator of sharing and memory
protection.

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

 Page table for
process 1

 Main memory

Permission bits

 Pointer
 Flags

 Page table for
process 2

 To disk memory

Only read accesses
allow ed

Read & w rite
accesses allowed

The Latency Penalty of Virtual Memory

Virtual address

Memory
access 1

Fig.

Physical address

Memory
access 2

 Page table

 Main memory

 Valid
bits

 Page table
register

 Virtual
page

number

 Other
f lags

Virtual- or Physical-Address Cache?

Fig.Options for where virtual-to-physical address
translation occurs.

TLB access may
form an extra
pipeline stage,
thus the penalty
in throughput can
be insignificant

Cache may be accessed with part
of address that is common between
virtual and physical addresses

TLB Main memory Virtual-address
cache

TLB Main memory Physical-address
cache

TLB

Main memory
Hybrid-address

cache

Page Replacement Policies

Least-recently used (LRU) policy

Implemented by maintaining a stack

Pages  A B A F B E A

LRU stack
MRU D A B A F B E A

B D A B A F B E
E B D D B A F B

LRU C E E E D D A F

Approximate LRU Replacement Policy

Fig. 20.8 A scheme for the approximate implementation of LRU .

Least-recently used policy: effective, but hard to implement

Approximate versions of LRU are more easily implemented
 Clock policy: diagram below shows the reason for name
 Use bit is set to 1 whenever a page is accessed

Page slot 0

Page slot 1Page slot 7
0

1

0

0

1

1

0

1

0

1

0

1

0

0

0

1

(a) Before replacement (b) After replacement

Improving Virtual Memory Performance

Table 20.1 Memory hierarchy parameters and their effects on performance

Parameter variation Potential advantages Possible disadvantages

Larger main or
cache size

Fewer capacity misses Longer access time

Larger pages or
longer lines

Fewer compulsory misses
(prefetching effect)

Greater miss penalty

Greater associativity
(for cache only)

Fewer conflict misses Longer access time

More sophisticated
replacement policy

Fewer conflict misses Longer decision time, more
hardware

Write-through policy
(for cache only)

No write-back time penalty,
easier write-miss handling

Wasted memory bandwidth,
longer access time

Fig. Data movement in a memory hierarchy.

Summary of Memory Hierarchy

Cache memory:
provides illusion of
very high speed

Virtual memory:
provides illusion of
very large size

Main memory:
reasonable cost,
but slow & small

Locality
makes
the
illusions
work Pages

 Lines
 Words

 Registers

 Main memory

 Cache

 Virtual
memory

 (transferred
explicitly

via load/store)
 (transferred
automatically

upon cache miss)
 (transferred
automatically

upon page fault)

Assignment 3

Q1. What do you mean by memory hierarchy?

Q2.Discuss semiconductor RAM. Differentiate
SRAM and DRAM.

Q3. What is cache memory? Why it is implemented?

Q4.Explain the concept of virtual memory.

Q5. Write short notes on following:

 i. Optical Disk

 ii. Magnetic Tape

Tutorial 3

Q1. A computer uses RAM chip of 1024*1 capacity. How many chips are
needed and how should there address lines be connected to provide a
memory capacity of 1024 bytes?

Q2.A ROM chip of 1024*8 bits has four select inputs and operates on a 5
volt power supply. How many pins are needed for the IC package? Draw
a block diagram and label all inputs and output terminals in the ROM.

Q3. Explain various cache mapping techniques. A computer system has
4K word cache organized in block set associative manner with 4 blocks
per set, 64 words per block. The main memory contains 65536 blocks.
How many bits are there in each of TAG, SET and WORD fields?

Q4. Define the term address space and memory space. An address
space is specified by 24 bits and corresponding memory space
specified by 16 bits. Find the following:

i. How many words are there in address space?

ii. How many words are there in memory space?

iii. If a page consists of 2K word, how many pages and blocks are
there in the system?

Q5. A Computer employs RAM chips of 2568 and ROM chips of
1024*8. The computer needs 2KB of RAM and

4KB of ROM and 4 interface units, each of 4 registers:

 i. How many RAM and ROM chips are needed

 ii. Draw memory address map for the system.

Outcomes

After reading above topics students will be
able to:

• Use research-based knowledge and
research methods including design of
experiments, analysis and interpretation of
data, and synthesis of the information to
provide valid conclusions.

11116/08/19

UNIT 4
I/O Organization

16/08/19
Department of Computer Science &

Engineering
112

COMPUTER
ORGANIZATION

& ARCHITECTURE

 Peripheral Devices
 I/O

 Modules
 Interfaces
 Processor
 Port

 Modes of Transfer
 Programmed I/O
 Interrupt Driven I/O
 DMA

 Asynchronous & Synchronous Communication

16/08/19 113
Department of Computer Science &

Engineering

Learning Objectives

The objectives of the following slide is to make student
aware about the :

 Peripheral Devices
 I/O

 Modules
 Interfaces
 Processor
 Port

 Modes of Transfer
 Programmed I/O
 Interrupt Driven I/O
 DMA

 Asynchronous & Synchronous Communication

11416/08/19 Department of Computer Science &
Engineering

Input-Output Organization

• 11-1 Peripheral Devices
– I/O Subsystem

• Provides an efficient mode of communication between the central system
and the outside environment

– Peripheral (or I/O Device)
• Input or Output devices attached to the computer

– Monitor (Visual Output Device) : CRT, LCD
– KBD (Input Device) : light pen, mouse, touch screen, joy stick, digitizer
– Printer (Hard Copy Device) : Dot matrix (impact), thermal, ink jet, laser (non-impact)
– Storage Device : Magnetic tape, magnetic disk, optical disk

– ASCII (American Standard Code for Information Interchange) Alphanumeric Characters
• I/O communications are usually involved in the transfer of ASCII information
• ASCII Code
• 11-2 Input-Output Interface

– Interface
• 1) A conversion of signal values may be required

• 2) A synchronization mechanism may be needed
– The data transfer rate of peripherals is usually slower than the transfer rate of the CPU

• 3) Data codes and formats in peripherals differ from the word format in the CPU
and Memory

• 4) The operating modes of peripherals are different from each other
– Each peripherals must be controlled so as not to disturb the operation of other peripherals

connected to the CPU

– Interface
• Special hardware components between the CPU and peripherals
• Supervise and Synchronize all input and output transfers

– I/O Bus and Interface Modules : Fig. 11-1

• I/O Bus
– Data lines
– Address lines
– Control lines

• Interface Modules : 주로 VLSI Chip 사용

– SCSI (Small Computer System Interface)
– IDE (Integrated Device Electronics)
– Centronics
– RS-232
– IEEE-488 (GPIB)

I n te r f a c e

K e y b o a rd
a n d

d is p la y
t e r m in a l

I n te r f a c e

M a g n e t ic
t a p e

I n te r f a c e

M a g n e t i c
d is k

I n te r f a c e

P r in te r

P r o c e s s o r

D a ta

C o n t r o l

A d d r e s s

I / O b u s

• I/O command : 8251 SIO
– Control Command
– Status Command
– Input Command
– Output Command

– I/O Bus versus Memory Bus
• Computer buses can be used to communicate with memory and I/O

– 1) Use two separate buses, one for memory and the other for I/O : Fig. 11-19, p. 421
» I/O Processor

– 2) Use one common bus for both memory and I/O but have separate control lines for
each : Isolated I/O or I/O Mapped I/O

» IN, OUT : I/O Instruction
» MOV or LD : Memory read/write Instruction

– 3) Use one common bus for memory and I/O with common control lines : Memory
Mapped I/O

» MOV or LD : I/O and Memory read/write Instruction

Intel, Zilog

 Motorola
* Control Lines

I/O Request, Mem Request, Read/Write

* Control Lines
Read/Write

– Example of I/O Interface : Fig. 11-2

• 4 I/O port : Data port A, Data port B,
Control, Status

– 비교 : 8255 PIO (port A, B, C, Control/Status)

• Address Decode : CS, RS1, RS0

• 11-3 Asynchronous Data Transfer
– Synchronous Data Transfer

• All data transfers occur simultaneously
during the occurrence of a clock pulse

• Registers in the interface share a
common clock with CPU registers

– Asynchronous Data Transfer
• Internal timing in each unit (CPU and

Interface) is independent
• Each unit uses its own private clock for

internal registers

T im in g
a n d

C o n t ro l

C S

W R

R D

R S
0

R S
1

B u s
b u ff e r s

S t a tu s
r e g i s te r

C o n t ro l
r e g i s te r

P o r t B
r e g i s te r

P o r t A
r e g i s te rB id i re c t io n a l

d a t a b u s

S ta t u s

T o C P U

I / O r e a d

R e g is te r s e le c t

C h ip s e le c t

I / O w r i te

I / O d a t a

I / O d a t a

C o n t r o l

T o I / O d e v ic e

In
te

rn
a
l
b
u
s

C S R S
0

R S
1

R e g is te r s e le c te d

N o n e : d a ta b u s in h ig h - im p e d a n c e

P o r t A r e g is te r

P o r t B r e g is te r

C o n tro l r e g is t e r

S t a t u s r e g is te r

0

1

1

1

1

1 0

0

1

1

0

1

0

× ×

– Strobe : Control signal to indicate the time at which data is being transmitted

• 1) Source-initiated strobe : Fig. 11-3
• 2) Destination-initiated strobe : Fig. 11-4

• Disadvantage of strobe method
– Destination 이 Data 가 가갔 가 를아무이상없이잘 져 는지알수 없다 .
– 따라서 Handshake method 를사용하여 Data 전송을확인함

Fig. 11-3 Source-initiated strobeFig. 11-4 Destination-initiated strobe



 



S o u r c e
u n it

D e s t in a t io n
u n it

(a) B lo c k d ia g r a m

V a lid d a t a
D a ta

S t r o b e

(b) T im in g d ia g r a m

D a ta b u s

S tr o b e
S o u r c e

u n i t
D e s t in a t io n

u n i t

(a) B lo c k d ia g r a m

V a l id d a ta
D a t a

S t r o b e

(b) T im in g d ia g r a m

D a ta b u s

S tr o b e

– Handshake : Agreement between two independent units

• 1) Source-initiated handshake : Fig. 11-5
• 2) Destination-initiated handshake : Fig. 11-6

• Timeout : If the return handshake signal does not respond within a given time period, the unit
assumes that an error has occurred.

Fig. 11-5 Source-initiated handshakeFig. 11-6 Destination-initiated handshake



 




 


S o u rc e
u n i t

D e s t in a t io n
u n i t

(a) B lo c k d i a g r a m

V a l id d a t a
D a t a

(b) T im in g d ia g ra m

D a ta b u s

D a t a v a lid

D a ta a c c e p t e d

D a ta v a l id

D a t a a c c e p t e d

P la c e d a t a o n b u s
E n a b le d a ta v a lid .

D is a b le d a ta v a l id
I n v a l id a te d a t a o n b u s

A c c e p t d a t a f ro m b u s
E n a b le d a ta a c c e p te d

D is a b le d a ta a c c e p t e d
R e a d y to a c c e p t d a ta

(in it ia l s t a t e)

(c) S e q u e n c e o f e v e n ts

S o u r c e u n i t D e s t in a t i o n u n i t

S o u r c e
u n it

D e s t i n a t io n
u n it

(a) B lo c k d i a g r a m

V a l id d a ta

(b) T i m i n g d i a g ra m

D a t a b u s

D a t a v a l id

R e a d y f o r d a t a

D a t a v a l id

D a ta b u s

P la c e d a t a o n b u s
E n a b le d a ta v a l id .

D i s a b le d a t a v a l i d
In v a l id a te d a t a o n b u s

(in i t ia l s ta t e)

A c c e p t d a ta f r o m b u s
D is a b le re d a y f o r d a t a

R e a d y t o a c c e p t
d a t a .

E n a b le r e a d y f o r d a ta

(c) S e q u e n c e o f e v e n t s

R e a d y f o r d a t a

S o u r c e u n i t D e s t in a t io n u n i t

– Asynchronous Serial Transfer
• Synchronous transmission : Sec. 11-8

– The two unit share a common clock frequency
– Bits are transmitted continuously at the rate dictated by the clock pulses

• Asynchronous transmission : Fig. 11-7
– Special bits are inserted at both ends of the character code
– Each character consists of three parts :

» 1) start bit : always “0”, indicate the beginning of a character
» 2) character bits : data
» 3) stop bit : always “1”

• Asynchronous transmission rules :
–  When a character is not being sent, the line is kept in the 1-state
–  The initiation of a character transmission is detected from the start bit,

which is always “0”
–  The character bits always follow the start bit
–  After the last bit of the character is transmitted, a stop bit is detected

when the line returns to the 1-state for at least one bit time
   

1 1 11 0000

S t a r t
b i t C h a ra c te r b i t s

S to p
b i t

• Baud Rate : Data transfer rate in bits per second
– 10 character per second with 11 bit format = 110 bit per second

• UART (Universal Asynchronous Receiver Transmitter) : 8250
• UART (Universal Synchronous/Asynchronous Receiver Transmitter) : 8251

– Asynchronous Communication Interface : Fig. 11-8

• 8250 SIO
– 80 : Data Write/Read (Transmit/Receive)
– 81 : Control Write/ Status Read

» A0 = RS (register select)

• Double Buffered (in transmit register)
– New character can be loaded as soon as
 the previous one starts transmission

• 3 possible errors (in status register)
– 1) parity error

» Even or Odd parity error
– 2) framing error

» right number of stop bits is not detected
 at the end of the received character

– 3) overrun error
» CPU does not read the character from
 the receiver register before the next one is available

T im in g
a n d

C o n t r o l

C S

W R

R D

R S

B u s
b u ff e r s

S ta tu s
r e g is t e r

C o n t ro l
r e g is t e r

R e c e iv e r
r e g is t e r

T r a n s m it te r
r e g is t e rB id i r e c t io n a l

d a t a b u s

I / O re a d

R e g is t e r s e le c t

C h ip s e le c t

I / O w r i te

In
te

rn
a
l
b
u
s

C S R S R e g is t e r s e le c te d

N o n e : d a ta b u s in h ig h - im p e d a n c e

T r a n s m it te r r e g is te r

0

1

1

1

1 1

0

1

0

×

S h i f t
r e g is te r

S h i f t
r e g is te r

T r a n s m it te r
c o n tr o l

a n d c lo c k

R e c e iv e r
c o n tr o l

a n d c lo c k

T r a n s m it
d a ta

T r a n s m it te r
c lo c k

R e c e i v e r
d a ta

R e c e i v e r
c lo c k

R D

W R

R D

W R

O p e r a t io n

×

C o n tr o l r e g i s te r

R e c e i v e r r e g is t e r

S ta tu s re g i s t e r

• 11-4 Modes of Transfer
– Data transfer to and from peripherals

• 1) Programmed I/O : in this section
• 2) Interrupt-initiated I/O : in this section and sec. 11-5
• 3) Direct Memory Access (DMA) : sec. 11-6
• 4) I/O Processor (IOP) : sec. 11-7

– Example of Programmed I/O : Fig. 11-10, 11-11

– Interrupt-initiated I/O
• 1) Non-vectored : fixed branch address
• 2) Vectored : interrupt source supplies the branch address (interrupt vector)

I n te r f a c e

C P U
I / O

d e v ic e

D a ta re g i s te r

S ta tu s
r e g is te r

F

D a ta b u s

I / O w r i te

I / O r e a d

A d d re s s b u s

D a ta a c c e p te d

D a ta v a lid

I / O b u s

F = F la g b i t

R e a d s ta tu s re g i s te r

C h e c k fl a g b i t

R e a d d a ta re g i s te r

T ra n s f e r d a ta to m e m o ry

C o n t in u e
w i th

p ro g r a m

F l a g

O p e r a t i o n
c o m p l e t e ?

= 0

= 1

y e s

n o

– Software Considerations
• I/O routines

– software routines for controlling peripherals and for transfer of data between the
processor and peripherals

• I/O routines for standard peripherals are provided by the manufacturer
(Device driver, OS or BIOS)

• I/O routines are usually included within the operating system
• I/O routines are usually available as operating system procedures (OS or

BIOS function call)

• 11-5 Priority Interrupt
– Priority Interrupt

• Identify the source of the interrupt when several sources will request
service simultaneously

• Determine which condition is to be serviced first when two or more
requests arrive simultaneously

– 1) Software : Polling
– 2) Hardware : Daisy chain, Parallel priority

– Polling
• Identify the highest-priority source by

software means
– One common branch address is used for all

interrupts
– Program polls the interrupt sources in sequence
– The highest-priority source is tested first

• Polling priority interrupt 의단점
– If there are many interrupt sources, the time

required to poll them can exceed the time
available to service the I/O device

– 따라서 Hardware priority interrupt 를사용

– Daisy-Chaining : Fig. 11-12

“1” “1” “0”Device 2
Interrupt Request

D e v i c e 1
P I P O

D e v ic e 3
P I P O

D e v ic e 2
P I P O T o n e x t

D e v ic e

C P U

I N T

I N T A C K

I n te r r u p t r e q u e s t

I n te r r u p t a c k n o w le d g e

P r o c e s s o r d a ta b u s

V A D 1 V A D 3V A D 2

• One stage of the daisy-chain priority arrangement : Fig. 11-13

 No interrupt request
 Invalid : interrupt request, but no acknowledge
 No interrupt request : Pass to other device (other device requested interrupt)
 Interrupt request






INTACK

INT
S Q

R

V e c to r a d d r e s s

D e la y

E n a b le

R F

P I
P r io r i ty in

I n te r r u p t
r e q u e s t

f r o m d e v ic e

O p e n - c o l le c to r
in v e r t e r I n te r r u p t r e q u e s t to C P U

P r io r i t y o u t
P O

V A D

R FP I P O E n a b le
0
0
1
1

0

0
1

1

0
0
1
1

0
0
0
1

– Parallel Priority
• Priority Encoder Parallel

Priority : Fig. 11-14
– Interrupt Enable F/F (IEN) : set or

cleared by the program
– Interrupt Status F/F (IST) : set or

cleared by the encoder output
• Priority Encoder Truth Table :

Tab. 11-2
– Interrupt Cycle

• At the end of each instruction
cycle, CPU checks IEN and IST

• if both IEN and IST equal to “1”
• CPU goes to an Instruction

Cycle
– Sequence of microoperation

during Instruction Cycle

: Decrement stack point
: Push PC into stack
: Enable INTACK
: Transfer VAD to PC
: Disable further interrupts

Branch to ISR

0

3

2

1

0

3

2

1

 P r io r i ty
 e n c o d e r

I 0

I 2

I 3

I 1

d is k

K e y b o a r d

R e a d e
r

P r i n t e r

I n te r r u p t
r e g is t e r

y

0

0

0

0

0

0

x

I S TI E N

V A D
to C P U

E n a b le

I n t e r r u p t
to C P U

I N T A C K
f r o m C P U

M a s k
r e g is t e r

ninstructionext Fetch to

0

1

][

1

Go

IEN

VADPC

INTACK

PCSPM

SPSP









– Software Routines
• CPU 가 현재 main program 의 749 번지를실행

 도중에 KBD interrupt 발생
• KBD service program 의 255 번지를실행도중

 에 DISK interrupt 발생

KBD Int. Here
749

DISK Int. Here
255

J M P D I S K

M a in p r o g r a m

J M P K B D

J M P R D R

J M P P D R

S t a c k

7 5 0
2 5 6

M e m o r y

0

3

2

1

A d d r e s s

7 5 0

P r o g r a m t o s e r v ic e
m a g n e t i c d i s k

P r o g r a m t o s e r v ic e
K e y b o a r d

P r o g r a m t o s e r v ic e
c h a r a c t e r r e a d e r

P r o g r a m t o s e r v ic e
l i n e p r i n te r

D I S K

2 5 6

K B D

R D R

P T R

I / O s e r v ic e p r o g r a m s

• 11-6 Direct Memory Access (DMA)
– DMA

• DMA controller takes over the buses to
manage the transfer directly between the
I/O device and memory (Bus
Request/Grant)

Fig. 11-14

C P U

B R

B G

D B U S

W R

A B U S

R D

B u s r e q u e s t

B u s g r a n t

A d d r e s s b u s

W r i t e

R e a d

D a t a b u s
H ig h - im p e d a n c e

(d is a b le)
w h e n B G is

e n a b le d

 D M A
C o n t r o l le r

B R

B G

– Transfer Modes
• 1) Burst transfer :
• 2) Cycle stealing transfer :

– DMA Controller (Intel 8237 DMAC) : Fig. 11-17

• DMA Initialization Process
– 1) Set Address register :

» memory address for read/write
– 2) Set Word count register :

» the number of words to transfer
– 3) Set transfer mode :

» read/write,
» burst/cycle stealing,
» I/O to I/O,
» I/O to Memory,
» Memory to Memory
» Memory search
» I/O search

– 4) DMA transfer start : next section
– 5) EOT (End of Transfer) :

» Interrupt

C o n t r o l
lo g i c

C S

D a ta b u s
b u ff e r s

C o n t r o l r e g is te r

D a ta b u s

D M A s e le c t

In
te

rn
a
l
b
u
s

R S

I n te r r u p t

B G

B R

R D

W R

R e g is te r s e le c t

R e a d

W r i te

B u s r e q u e s t

B u s g r a n t

I n te r r u p t

A d d r e s s r e g is t e r

W o r d c o u n t r e g is te r

A d d r e s s b u s
b u ff e r s

A d d r e s s b u s

D M A r e q u e s t

D M A A c k n o w le d g e
t o I / O d e v ic e

– DMA Transfer (I/O to Memory)
• 1) I/O Device sends a DMA request
• 2) DMAC activates the BR line
• 3) CPU responds with BG line
• 4) DMAC sends a DMA acknowledge
 to the I/O device
• 5) I/O device puts a word in the data
 bus (for memory write)
• 6) DMAC write a data to the address
 specified by Address register
• 7) Decrement Word count register
• 8) Word count register
 EOT interrupt CPU
• 9) Word count register
• DMAC checks the DMA request from
 I/O device

I / O
P e r ip h e r a l

d e v ic e

D M A a c k n o w le d g e

A d d r e s s
s e le c t

C P U

I n te r r u p t

A d d r e s s D a t a

B G

B R

R D W R

R a n d o m a c c e s s
m e m o r y (R A M)

A d d r e s s D a taR D W R

 D i r e c t m e m o r y
 a c c e s s (D A M)

 c o n tr o l le r

I n te r r u p t

A d d r e s s D a t aR D W R

B G

R S

D S

B R
D M A r e q u e s t

R e a d c o n tr o l

W r i te c o n t r o l

A d d r e s s b u s

D a ta b u s

• 11-7 Input-Output Processor (IOP)
– IOP : Fig. 11-19

• Communicate directly with all I/O devices
• Fetch and execute its own instruction

– IOP instructions are specifically designed to facilitate I/O transfer
– DMAC must be set up entirely by the CPU

• Designed to handle the details of I/O processing

– Command
• Instruction that are read form memory by an IOP

– Distinguish from instructions that are read by the CPU
– Commands are prepared by experienced programmers and are stored in memory
– Command word = IOP program

M e m o r y u n i t

C e n t r a l P ro c e s s in g
u n i t (C P U)

I n p u t - o u tp u t
p r o c e s s o r (I O P)

M
em

o
ry

 b
u
s

P D P DP DP D

P e r ip h e r a l d e v ic e s

I / O b u s

– CPU - IOP Communication : Fig. 11-20

• Memory units acts as a message center :
Information

– each processor leaves information for the other

Message Center

IOP Program
CPU Program

C P U o p e r a t io n s I O P o p e r a t io n s

S e n d in s tr u c t i o n
to t e s t I O P p a t h T r a n s f e r s t a t u s w o r d

to m e m o r y lo c a t io n

I f s t a t u s O K . , s e n d
s t a r t I / O in s t ru c t io n

t o I O P
A c c e s s m e m o r y f o r

I O P p r o g r a m

C P U c o n t in u e s w i t h
a n o t h e r p r o g r a m

C o n d u c t I / O t ra n s f e r
u s in g D M A ; p re p a r e

s t a t u s r e p o r t

I / O t r a n s f e r c o m p le t e d
in te r ru p t C P U

R e q u e s t I O P s t a t u s

T r a n s f e r s t a t u s w o r d
to m e m o r y lo c a t io n

C h e c k s t a t u s w o r d
f o r c o r r e c t t ra n s f e r

C o n t in u e

• 11-8 Serial Communication
– Difference between I/O Processor and Data Communication Processor

• I/O Processor
– communicate with peripherals through a common I/O bus (data, address, control bus)

• Data Communication Processor
– communicate with each terminal through a single pair of wires

– Modem (= Data Sets, Acoustic Couplers)
• Convert digital signals into audio tones to be transmitted over telephone lines
• Various modulation schemes are used (FM, AM, PCM)

– Block transfer
• An entire block of characters is transmitted in synchronous transmission
• Transmitter sends one more character (error check) after the entire block is sent

– Error Check
• LRC (Longitudinal Redundancy Check) : XOR
• CRC (Cyclic Redundancy Check) : Polynomial

– 3 Transmission System
• Simplex : one direction only
• Half-duplex : both directions but only one direction at a time
• Full-duplex : both directions simultaneously

– Data Link
• The communication lines, modems, and other equipment used in the transmission of

information between two or more stations

– Data Link Protocol
• 1) Character-Oriented Protocol
• 2) Bit-Oriented Protocol

– Character-Oriented Protocol
• Message format for Character-Oriented Protocol : Fig. 11-25

– TEXT :
– BCC : Block Check Character (LRC or CRC)

• ASCII Communication Control Character : Tab. 11-4
– SYN (0010110) : Establishes synchronism
– SOH (0000001) : Start of Header (address or control information)
– STX (0000010) : Start of Text
– ETX (0000011) : End of Text

• Transmission Example : Tab. 11-5, 11-6

S Y N S O HS Y N H e a d e r S T X T e x t B C CE T X

Assignment 4

Q1. Differentiate synchronous and
asynchronous transmission.
Q2. What is CAM?
Q3. Give the block diagram of DMA controller.
Why are the read and write control lines in a
DMA controller bidirectional?
Q4. Explain the working principle of I/O
processors.
Q5. Discuss the Programmed I/O method for
controlling input output operations.

Tutorial 4

Q1. Differentiate synchronous and
asynchronous communication.
Q2. What are various asynchronous
communication protocols explain.
Q3. What is interrupt? Explain priority
interrupt.
Q4. What are various mode of data
transfer?
Q5. What do you mean by I/O
processors?

Outcomes

After reading above topics students will be
able to:

• Use research-based knowledge and
research methods including design of
experiments, analysis and interpretation of
data, and synthesis of the information to
provide valid conclusions.

13816/08/19

UNIT 5
Pipelining & Speed Up

Concept

16/08/19
Department of Computer Science &

Engineering
139

COMPUTER
ORGANIZATION

& ARCHITECTURE

 Architectural Classification
 Flynn’s
 Feng’s

 Pipelining
 Concepts
 Performance

 Speed Laws
 Pipelining Hazards

16/08/19 140
Department of Computer Science &

Engineering

Learning Objectives

The objectives of the following slide is to make
student aware about the :

 Architectural Classification
 Flynn’s
 Feng’s

 Pipelining
 Concepts
 Performance

14116/08/19 Department of Computer Science &
Engineering

Characterize Pipelines

1) Hardware or software implementation – pipelining can be
implemented in either software or hardware.

2) Large or Small Scale – Stations in a pipeline can range from
simplistic to powerful, and a pipeline can range in length from
short to long.

3) Synchronous or asynchronous flow – A synchronous pipeline
operates like an assembly line: at a given time, each station is
processing some amount of information. A asynchronous
pipeline, allow a station to forward information at any time.

4) Buffered or unbuffered flow – One stage of pipeline sends data
directly to another one or a buffer is place between each pairs
of stages.

5) Finite Chunks or Continuous Bit Streams – The digital
information that passes though a pipeline can consist of a
sequence or small data items or an arbitrarily long bit stream.

6) Automatic Data Feed Or Manual Data Feed – Some
implementations of pipelines use a separate mechanism to
move information, and other implementations require each
stage to participate in moving information.

What is Pipelining

• A technique used in advanced microprocessors
where the microprocessor begins executing a
second instruction before the first has been
completed.

- A Pipeline is a series of stages, where some work
is done at each stage. The work is not finished
until it has passed through all stages.

• With pipelining, the computer architecture allows
the next instructions to be fetched while the
processor is performing arithmetic operations,
holding them in a buffer close to the processor
until each instruction operation can performed.

How Pipelines Works

• The pipeline is divided into segments
and each segment can execute it
operation concurrently with the other
segments. Once a segment
completes an operations, it passes
the result to the next segment in the
pipeline and fetches the next
operations from the preceding
segment.

Example

Instructions Fetch

• The instruction Fetch (IF) stage is responsible for
obtaining the requested instruction from memory.
The instruction and the program counter (which is
incremented to the next instruction) are stored in
the IF/ID pipeline register as temporary storage
so that may be used in the next stage at the start
of the next clock cycle.

Instruction Decode

• The Instruction Decode (ID) stage is responsible
for decoding the instruction and sending out the
various control lines to the other parts of the
processor. The instruction is sent to the control
unit where it is decoded and the registers are
fetched from the register file.

Execution

• The Execution (EX) stage is where any
calculations are performed. The main component
in this stage is the ALU. The ALU is made up of
arithmetic, logic and capabilities.

Memory and IO

• The Memory and IO (MEM) stage is responsible for
storing and loading values to and from memory. It
also responsible for input or output from the
processor. If the current instruction is not of
Memory or IO type than the result from the ALU is
passed through to the write back stage.

Write Back

• The Write Back (WB) stage is
responsible for writing the result of a
calculation, memory access or input
into the register file.

Operation Timings

• Estimated timings for each
of the stages: Instructio

n Fetch
2ns

Instructio
n Decode

1ns

Execution 2ns

Memory
and IO

2ns

Write
Back

1ns

Advantages/Disadvantages

Advantages:
• More efficient use of processor
• Quicker time of execution of large

number of
 instructions

Disadvantages:
• Pipelining involves adding hardware to

the chip
• Inability to continuously run the pipeline

 at full speed because of pipeline hazards

 which disrupt the smooth execution of

the
 pipeline.

Pipeline Hazards

• Data Hazards – an instruction uses the result of
the previous instruction. A hazard occurs exactly
when an instruction tries to read a register in its
ID stage that an earlier instruction intends to
write in its WB stage.

• Control Hazards – the location of an instruction
depends on previous instruction

• Structural Hazards – two instructions need to
access the same resource

Data Hazards

Stalling

• Stalling involves halting the flow of instructions
until the required result is ready to be used.
However stalling wastes processor time by
doing nothing while waiting for the result.

Type of Pipelining

• Software Pipelining
 1) Can Handle Complex Instructions
 2) Allows programs to be reused

• Hardware Pipelining
 1) Help designer manage complexity – a
 complex task can be divided into smaller,
 more manageable pieces.
 2) Hardware pipelining offers higher
 performance

Type of Hardware Pipelines

• Instruction Pipeline - An instruction pipeline is
very similar to a manufacturing assembly line.

1st stage receives some parts, performs its
assembly task, and passes the results to the
second stage;

2nd stage takes the partially assembled product
from the first stage, performs its task, and passes
its work to the third stage;

3rd stage does its work, passing the results to the
last stage, which completes the task and outputs
its results.

• Data Pipeline – data pipeline is designed to pass
data from stage to stage.

Instruction Pipelines Conflict

• It divided into two categories.
– Data Conflicts
– Branch Conflicts

• When the current instruction changes a register
that the next one needed, data conflicts happens.

• When the current instruction make a jump,
branch conflicts happens.

ARCHITECTURAL CLASSIFICATION

• Flynn classification: (1966) is
based on multiplicity of instruction
streams and the data streams in
computer systems.

• Feng’s classification: (1972) is
based on serial versus parallel
processing.

Flynn classification:
• It Is based on multiplicity of instruction streams and the data

streams in computer systems.
• The most popular taxonomy of computer architecture was

defined by Flynn.
– Flynn’s classification scheme is based on the notion of a stream of

information. Two types of information flow into a processor:
instructions and data.

– The instruction stream is defined as the sequence of instructions
performed by the processing unit.

– The data stream is defined as the data traffic exchanged between
the memory and the processing unit

• Computer architecture can be classified into the following four
distinct categories:
– single-instruction single-data streams (SISD);
– single-instruction multiple-data streams (SIMD);
– multiple-instruction single-data streams (MISD); and
– multiple-instruction multiple-data streams (MIMD).

FENG’S CLASSIFICATION
•Tse-yun Feng suggested the use of degree of parallelism to classify various computer

architectures.

•The maximum number of binary digits that can be processed within a unit time by a

computer system is called the maximum parallelism degree P.

•A bit slice is a string of bits one from each of the words at the same vertical position.

•Under above classification

–Word Serial and Bit Serial (WSBS)

–Word Parallel and Bit Serial (WPBS)

–Word Serial and Bit Parallel(WSBP)

–Word Parallel and Bit Parallel (WPBP)

•WSBS has been called bit parallel processing because one bit is processed at a time.

•WPBS has been called bit slice processing because m-bit slice is processes at a time.

•WSBP is found in most existing computers and has been called as Word Slice processing

because one word of n bit processed at a time.

•WPBP is known as fully parallel processing in which an array on n x m bits is processes at

one time.

Assignment 5

Q1. Explain pipeline concept with
performance matrices.
Q2. What do you mean by delayed
branch?
Q3. Explain Flynn’s and Feng’s
classification.
Q4. What is Amdahl's Law &
Gustafson's Law for speed up.
Q5. What are the various hazard in
pipelining? How they can be resolved?

Tutorial 5

Q1. Differentiate linear and non linear pipeline
processors.
Q2. What are various pipeline conflicts?
Q3. A non-pipeline system takes 50 ns to process a
task. The same task can processed in a six-segment
pipeline with a dock cycle of 10 ns. Determine the
speedup ratio of the pipeline for 100 tasks. What is
the maximum speedup that can achieved?
Q4.Give an example of program that will cause data
conflict in the three segment pipeline.
Q5. Discuss various issues in instruction pipelining.

Outcomes

After reading above topics students will be able
to:

• Ability to Identify, formulates, review research literature

and analyze complex engineering problems reaching
substantiated conclusions using first principles

mathematics, natural science and engineering science.

• Design solutions for complex engineering problems and

design system components or processes that meet the
specified needs with appropriate consideration for the

public health and safety, and the cultural, societal, and
environmental considerations.

16616/08/19

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Arithmetic
	Binary numbers (1)
	Binary numbers (2)
	Binary numbers (3)
	Conversion
	Signed binary numbers
	Two’s complement
	Two's Complement Operations
	Two's Complement Operations
	Addition & Subtraction
	Detecting Overflow
	Effects of Overflow
	Logic operations
	An ALU (arithmetic logic unit)
	Review: The Multiplexor
	Different Implementations
	Building a 32 bit ALU
	What about subtraction (a – b) ?
	ALU symbol
	Conclusions
	Problem: Ripple carry adder is slow
	Carry-lookahead adder (1)
	Carry-lookahead adder (2)
	Carry-lookahead adder (3)
	Multiplication (1)
	Multiplication (2)
	Multiplication (3)
	Multiplication (4)
	Fast multiply: Booth’s Algorithm
	Booth’s Algorithm (2)
	Division
	Divide (1)
	Division (2)
	Multiply / Divide in MIPS
	Shift instructions
	Floating Point (a brief look)
	IEEE 754 floating-point standard
	Floating Point Complexities
	Conversion: decimal  IEEE 754 FP
	Slide 45
	Tutorial 1
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Fetch cycle
	The Fetch Cycle
	Decode cycle
	Slide 57
	Micro-operations
	Micro-operations and the Clock
	The Indirect Cycle
	Types of Micro-operation
	Model of Control Unit
	Control Signals - Input
	Data Paths and Control Signals
	PROCESSOR ORGANIZATION
	Internal Organization
	Hardwired Implementation
	Control Unit with Decoded Inputs
	Hardwired Logic
	Problems With Hard Wired Designs
	Assignment 2
	Tutorial 2
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Multiple-Chip SRAM
	SRAM with Bidirectional Data Bus
	DRAM and Refresh Cycles
	Bridging the CPU-Memory Speed Gap
	Nonvolatile Memory
	The Need for a Memory Hierarchy
	Typical Levels in a Hierarchical Memory
	Cache Memory Organization
	Cache, Hit/Miss Rate, and Effective Access Time
	Multiple Cache Levels
	Cache Memory Design Parameters
	What Makes a Cache Work?
	Direct-Mapped Cache
	Accessing a Direct-Mapped Cache
	Set-Associative Cache
	Accessing a Set-Associative Cache
	Disk Memory Basics
	Disk Drives
	Access Time for a Disk
	Disk Performance
	The Need for Virtual Memory
	Memory Hierarchy: The Big Picture
	Address Translation in Virtual Memory
	Page Tables and Address Translation
	Protection and Sharing in Virtual Memory
	The Latency Penalty of Virtual Memory
	Virtual- or Physical-Address Cache?
	Page Replacement Policies
	Approximate LRU Replacement Policy
	Improving Virtual Memory Performance
	Summary of Memory Hierarchy
	Assignment 3
	Tutorial 3
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Input-Output Organization
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Assignment 4
	Tutorial 4
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Characterize Pipelines
	What is Pipelining
	How Pipelines Works
	Example
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Operation Timings
	Advantages/Disadvantages
	Pipeline Hazards
	Data Hazards
	Stalling
	Slide 157
	Type of Pipelining
	Type of Hardware Pipelines
	Instruction Pipelines Conflict
	ARCHITECTURAL CLASSIFICATION
	Slide 162
	Slide 163
	Assignment 5
	Tutorial 5
	Slide 166

