
UNIT 
2

By- MS.ARTI GAUTAM
       A.P. (CSE),GLBITM

DATA STRUCTURES

16/08/19 Department of Computer Science and 
Engineering

1



VISION

To build strong teaching environment that responds the need of industry 
and challenges of society.

MISSION
M1:Developing strong mathematical & computing fundamentals among the

        students.
M2: Extending the role of computer science and engineering in diverse
         areas. 
M3: Imbibing the students with a deep understanding of professional ethics
         and high integrity to serve the nation.
M4: Providing an environment to the students for their growth both as  
         individuals and as globally competent Computer Science professional.
M5: Outreach activities will contribute to the overall wellbeing of society.

Department of Computer Science 
and Engineering

216/08/19



Syllabus 

Stacks: Abstract Data Type, Primitive Stack 
operations: Push & Pop, Array and Linked 
Implementation of Stack in C, Application of stack: 
Prefix and Postfix Expressions, Evaluation of postfix 
expression, Recursion, Tower of Hanoi Problem, 
Simulating Recursion, Principles of recursion, Tail 
recursion, Removal of recursion Queues, Operations 
on Queue: Create, Add, Delete, Full and Empty, 
Circular queues, Array and linked implementation of 
queues in C, Dequeue and Priority Queue. 

16/08/19
Department of Computer Science and 

Engineering 3



Learning Objectives

The objectives of the following slide is to make 
student aware about the :

• Primitive operations on stack and queue
• Representation of stack and queue using array 

and linked list
• Applications of stack
• Types of queues
• Tower of Hanoi Problem

Department of Computer Science and 
Engineering

416/08/19



The stack abstract data type is defined by the following structure and 
operations. A stack is structured, as described above, as an ordered collection of 
items where items are added to and removed from the end called the “top.” 
Stacks are ordered LIFO.

Primitive Stack Operations
Stack operations may involve initializing the stack, using it and then de-
initializing it. Apart from these basic stuffs, a stack is used for the following two 
primary operations −
push() − Pushing (storing) an element on the stack.
pop() − Removing (accessing) an element from the stack.

16/08/19 Department of Computer Science and 
Engineering

5

The Stack Abstract Data Type



                            Primitive Stack Operations

The following diagram depicts a stack and its operations −

16/08/19
Department of Computer Science and 

Engineering 6



Push Operation
The process of putting a new data element onto stack is known as a Push Operation. 
Push operation involves a series of steps −
• Step 1 − Checks if the stack is full.
• Step 2 − If the stack is full, produces an error and exit.
• Step 3 − If the stack is not full, increments top to point next empty space.
• Step 4 − Adds data element to the stack location, where top is pointing.
• Step 5 − Returns success.

16/08/19
Department of Computer 
Science and Engineering

7



Pop Operation

A Pop operation may involve the following steps −
• Step 1 − Checks if the stack is empty.
• Step 2 − If the stack is empty, produces an error and exit.
• Step 3 − If the stack is not empty, accesses the data element at which top is 

pointing.
• Step 4 − Decreases the value of top by 1.
• Step 5 − Returns success.

16/08/19
Department of Computer Science 

and Engineering
8



Algorithm of Push and Pop Operation

   Push

begin procedure push: stack, 
data 

if stack is full 

return null 

endif top ← top + 1 

stack[top] ← data 

end procedure

Pop

begin procedure pop: stack 

if stack is empty

 return null 

endif data ← stack[top]

 top ← top – 1

 return data 

end procedure

16/08/19
Department of Computer 
Science and Engineering

9



Array representation of Stack

Stack can be represented by means of a one way list or a linear array. 
A pointer variable top  contains the locations of the top element of 
the stack and a variable max stk gives the maximum number of 
elements of the Stack that can be held by Stack.
the condition top=0 will indicate that the stack is empty. 
This procedure pushes an item onto the Stack via Top. 

PUSH(Stack, Top, MaxStk, Item) 
1. If Top == MaxStk //check Stack already fill or not 
      then print "Overflow" and return 
2. Set Top = Top + 1 //increase top by 1 
3. Stack[Top] = Item //insert item in new top position 4. Return 
Let MaxStk=8, the array Stack contains M, N, O in it. Perform 
operations on it

16/08/19
Department of Computer 
Science and Engineering

10



Array representation of Stack

Pop operation on Stack
This procedures deletes the top element of Stack and assigns 
it to the variable item. 
POP(Stack, top, Item) 
 1. If Top == Null //check Stack top element to be deleted is 
empty 
         then print "Underflow" and return
 2.    Item = Stack[Top] //assign top element to item
 3.    Set Top = Top - 1 //decrease top by 1 
 4.   Return 
pop 3 elements 

16/08/19
Department of Computer Science and 

Engineering 11



Linked Representation of Stack

• Each node in the stack should contain two parts:
– info: the user's data
– next: the address of the next element in the stack

16/08/19
Department of Computer 
Science and Engineering

12

Node Type
 template<class ItemType>

struct NodeType {
  ItemType info;
  NodeType* next;
};



Linked Representation of Stack

First and last stack elements 
We need a data member to store the pointer to the top of the 
stack 

16/08/19
Department of Computer Science 

and Engineering
13

The next element of the last node should contain the 
value NULL



APPLICATIONS OF STACKS
1)Reversing Strings:
• A simple application of stack is reversing strings.To reverse a 
string , the characters of string are pushed onto the stack one by one 
as the string
is read from left to right.
• Once all the characters of string are pushed onto stack, they are 
popped one by one. Since the character last pushed in comes out 
first, subsequent pop
operation results in the reversal of the string.
For example:
To reverse the string ‘REVERSE’ the string is
read from left to right and its characters are pushed . LIKE:

16/08/19
Department of Computer Science 

and Engineering
14



APPLICATIONS OF STACKS

2)Evaluating arithmetic expressions:
• INFIX notation:
The general way of writing arithmetic
expressions is known as infix notation.
e.g, (a+b)
• PREFIX notation:
e.g, +AB
• POSTFIX notation:
e.g: AB+
Conversion of INFIX to POSTFIX conversion:
Example: 2+(4-1)*3 step1
2+41-*3 step2
2+41-3* step3
241-3*+ step4

16/08/19
Department of Computer Science 

and Engineering
15



CONVERSION OF INFIX INTO POSTFIX
2+(4-1)*3 into 241-3*+

16/08/19 Department of Computer Science and 
Engineering

16



APPLICATIONS OF STACKS

3) CONVERSION OF INFIX INTO POSTFIX EXPRESSION
• Output operands as encountered
• Stack left parentheses
• When ‘)’

– repeat
• pop stack, output symbol 

– until ‘(‘
• ‘(‘ is poped but not output

• If symbol +, *, or ‘(‘ 
– pop stack until entry of lower priority or ‘(‘

• ‘(‘ removed only when matching ‘)’ is processed 
– push symbol into stack 

• At end of input, pop stack until empty

16/08/19
Department of Computer Science and 

Engineering
17



Algorithm to Evaluate a Postfix 
Expression

• Use a stack, assume binary operators +,*
• Input: postfix expression
• Scan the input

– If operand, 
• push to stack

– If operator
• pop the stack twice
• apply operator
• push result back to stack 

16/08/19
Department of Computer Science and 

Engineering
18



Queue

Stores a set of elements in a particular order
Queue principle: FIRST  IN  FIRST  OUT= FIFO
It means: the first element inserted is the first one 
to be removed
Example

 

The first one in line is the first one to be served.

16/08/19
Department of Computer Science and 

Engineering 19



First In First Out

16/08/19 Department of Computer Science and 
Engineering

20

rear
front

C
B
A

rear

front

D
C
B
A

rear

front



Array-based Queue Implementation

• As with the array-based stack implementation, 
the array is of fixed size
– A queue of maximum N elements

• Slightly  more complicated
– Need to maintain track of both front and rear 

16/08/19
Department of Computer Science and 

Engineering
21

Implementation 1

Implementation 2



Implementation 1: 
createQ, isEmptyQ, isFullQ

Queue createQ(max_queue_size) ::=
# define MAX_QUEUE_SIZE 100/* Maximum queue size 
*/
typedef struct {
                 int key;
                 /* other fields */
                 } element;
element queue[MAX_QUEUE_SIZE];
int rear = -1;
int front = -1;
Boolean isEmpty(queue) ::= front == rear
Boolean isFullQ(queue) ::= rear == MAX_QUEUE_SIZE-1

16/08/19
Department of Computer 
Science and Engineering

22



Implementation

enqueue
void enqueue(int *rear, 
element item)
{
/* add an item to the queue */
    if (*rear == 
MAX_QUEUE_SIZE_1) {
       queue_full( );
       return;
   }
   queue [++*rear] = item;
}

Dequeue

element dequeue(int *front, 
int rear)
{
/* remove element at the 
front of the queue */
    if ( *front == rear)
        return queue_empty( ); 
    /* return an error key */
    return queue [++ *front];
}   

16/08/19 Department of Computer Science and 
Engineering

23



Implementing queues using linked lists

• Allocate memory for each new element 
dynamically

• Link the queue elements together 
• Use two pointers, qFront and qRear, to mark the 

front and rear of the queue

16/08/19
Department of Computer Science and 

Engineering
24



Tower of Hanoi
• There are three towers
• 3 gold disks, with decreasing sizes, placed on the first 

tower
• You need to move all of the disks from the first tower 

to the last tower
• Larger disks can not be placed on top of smaller disks
• The third tower can be used to temporarily hold disks
• The disks must be moved within one week.  Assume 

one disk can be moved in 1 second.  Is this possible?
• To create an algorithm to solve this problem, it is 

convenient to generalize the problem to the “N-disk” 
problem, where in our case N = 3.

16/08/19
Department of Computer Science and 

Engineering 25



Recursive Solution

16/08/19 Department of Computer Science and 
Engineering

26



Recursive Solution

16/08/19
Department of Computer Science 

and Engineering
27



Circular Queue

16/08/19
Department of Computer 
Science and Engineering

28

EMPTY QUEUE



Leave one empty space when queue is full
Why?

16/08/19
Department of Computer 
Science and Engineering

29



Abstract Data Type: Priority Queue

• A priority queue is a collection of zero or more items,
– associated with each item is a priority

• A priority queue has at least three operations
– insert(item i) (enqueue) a new item  
– delete() (dequeue) the member with the highest 

priority
– find()  the item with the highest priority
– decreasePriority(item i, p) decrease the priority of  ith item to p

• Note that in a priority queue "first in first out" does not apply in general.

16/08/19 Department of Computer Science and 
Engineering

30



Priority Queues: Assumptions

• The highest priority can be either the minimum 
value of all the items, or the maximum. 
– We will assume the highest priority is the 

minimum.
– Call the delete operation deleteMin().
– Call the find operation findMin().

• Assume the priority queue has n members

16/08/19
Department of Computer Science and 

Engineering
31



ASSIGNMENT QUESTIONS
1 )Complete the class with all function definitions for a stack
class stack
{
int data[10];
int top;

public :
stack(){top=-1;}
void push();
void pop();

}

2)Change the following infix expression postfix expression. 
(A + B)*C+D/E-F

3)Convert the expression (True && False) || !(False || True) to postfix 
expression. Show the contents of the stack at every step.

16/08/19
Department of Computer Science 

and Engineering
32



ASSIGNMENT QUESTIONS

4)Use a stack to evaluate the following postfix expression and show 
the content of the stack after execution of each operation. Don't write 
any code. Assume as if you are using push and pop member 
functions of the stack.
AB-CD+E*+ (where A=5, B=3, C=5, D =4, and E=2)

5)Evaluate the following postfix expression using a stack and show 
the contents of stack after execution of each operation :
50,40,+,18, 14,-, *,+

6)Evaluate the following postfix expression using a stack and show 
the contents of stack after execution of each operation :
TRUE, FALSE, TRUE, FALSE, NOT, OR, TRUE, OR, OR, AND

16/08/19 Department of Computer Science and 
Engineering

33



ASSIGNMENT QUESTIONS

7)Complete the class with all function definitions for a circular queue
class queue
{
 int data[10];
 int front, rear;
public :
 queue(){front=-1;rear=-1}
 void add();
 void remove();
}
 8)Each node of a STACK contains the following information, in addition to required pointer field :
 i) Roll number of the student
 ii) Age of the student
Give the structure of node for the linked stack in question TOP is a pointer which points to the topmost node 
of the STACK. Write the following functions.
i) PUSH() - To push a node to the stack which is allocated dynamically
ii) POP() - To remove a node from the stack and release the memory. 
9)Write a function in C++ to perform a DELETE operation in a dynamically allocated queue considering the 
following description :

16/08/19
Department of Computer Science and 

Engineering
34



ASSIGNMENT QUESTIONS

struct Node
{
 float U,V;
 Node *Link;
};
class QUEUE
{
 Node *Rear,*Front;
public:
 QUEUE(){Rear=NULL; Front=NULL;}
 void INSERT();
 void DELETE();
 ~QUEUE();
};
10)Give the necessary declaration of a linked list implemented queue 
containing float type values. Also write a user-defined function in C++ to 
delete a float type number from the queue.

16/08/19
Department of Computer Science 

and Engineering
35



TUITORIAL QUESTIONS

1)Discuss how to implement queue 
using stack.
2) Discuss how to implement stack 
using queue.
3) What are priority queues?
4)Implement Tower of Hanoi problem
5)WAP to convert infix expression into 
postfix expression.

16/08/19 Department of Computer Science and 
Engineering

36



Outcomes

After reading above topics students will be 
able to:

• Understand Linear Data Structure Stack 
and Queue

• Know applications of stacks and queues.

Department of Computer Science and 
Engineering

3716/08/19



References

1)Data Structures and Algorithms Made Easy by 
Narasimha Karumanchi

2)Lipschutz, “Data Structures” Schaum’s Outline 
Series, Tata McGraw-hill Education (India) Pvt. Ltd. 
3) Thareja, “Data Structure Using C” Oxford Higher 
Education. 
4) AK Sharma, “Data Structure Using C”, Pearson 
Education India. 
5)Rajesh K. Shukla, “Data Structure Using C and 
C++” Wiley Dreamtech Publication. 

16/08/19
Department of Computer Science and 

Engineering
38


	DATA STRUCTURES
	Slide 2
	Syllabus
	Slide 4
	Slide 5
	Slide 6
	Push Operation
	Pop Operation
	Algorithm of Push and Pop Operation
	Array representation of Stack
	Array representation of Stack
	Linked Representation of Stack
	Linked Representation of Stack
	APPLICATIONS OF STACKS
	APPLICATIONS OF STACKS
	CONVERSION OF INFIX INTO POSTFIX 2+(4-1)*3 into 241-3*+
	APPLICATIONS OF STACKS
	Algorithm to Evaluate a Postfix Expression
	Queue
	First In First Out
	Array-based Queue Implementation
	Implementation 1: createQ, isEmptyQ, isFullQ
	Implementation
	Implementing queues using linked lists
	Tower of Hanoi
	Recursive Solution
	Recursive Solution
	Circular Queue
	Leave one empty space when queue is full Why?
	Abstract Data Type: Priority Queue
	Priority Queues: Assumptions
	ASSIGNMENT QUESTIONS
	ASSIGNMENT QUESTIONS
	ASSIGNMENT QUESTIONS
	ASSIGNMENT QUESTIONS
	TUITORIAL QUESTIONS
	Slide 37
	References

