
UNIT
5

By- Dr. Reshu
Agarwal

DATA STRUCTURES

16/08/19 Department of Computer Science and
Engineering

1

VISION

To build strong teaching environment that responds the need of industry
and challenges of society.

MISSION
M1:Developing strong mathematical & computing fundamentals among the

 students.
M2: Extending the role of computer science and engineering in diverse
 areas.
M3: Imbibing the students with a deep understanding of professional ethics
 and high integrity to serve the nation.
M4: Providing an environment to the students for their growth both as
 individuals and as globally competent Computer Science professional.
M5: Outreach activities will contribute to the overall wellbeing of society.

Department of Computer Science
and Engineering

216/08/19

Syllabus

• Searching: Sequential search, Binary Search,
Comparison and Analysis Internal Sorting: Insertion
Sort, Selection, Bubble Sort, Quick Sort, Two Way
Merge Sort, Heap Sort, Radix Sort, Practical
consideration for Internal Sorting.

• Search Trees: Binary Search Trees (BST), Insertion and
Deletion in BST, Complexity of Search Algorithm, AVL
trees, Introduction to m-way Search Trees, B Trees &
B+ Trees .

• Hashing: Hash Function, Collision Resolution Strategies
• Storage Management: Garbage Collection and

Compaction.

16/08/19
Department of Computer Science and

Engineering 3

Learning Objectives

The objectives of the following slide is to make
student aware about the :

• Various techniques of sorting and searching and
their effective implementation.

• Search Trees
• Hashing
• Storage Management

Department of Computer Science and
Engineering

416/08/19

Linear Search

Linear search or sequential search is a method for finding a
particular value in a list that consists of checking every one of its
elements, one at a time and in sequence, until the desired one is
found.
Linear Search Algorithm
1. Repeat For J = 1 to N
2. If (ITEM == A[J]) Then
3. Print: ITEM found at location J
4. Return [End of If]
[End of For Loop]
5. If (J > N) Then
6. Print: ITEM doesn’t exist
[End of If]
7. Exit

16/08/19
Department of Information

Technology
5

How Linear Search works

Linear search in an array is usually programmed by
stepping up an index variable until it reaches the last
index. This normally requires two comparisons for each
list item: one to check whether the index has reached
the end of the array, and another one to check whether
the item has the desired value.

16/08/19
Department of Information

Technology
6

Complexity of linear
Search

• Linear search on a list of n elements. In the worst
case, the search must visit every element once. This
happens when the value being searched for is either
the last element in the list, or is not in the list.
However, on average, assuming the value searched
for is in the list and each list element is equally likely
to be the value searched for, the search visits only n/2
elements. In best case the array is already sorted i.e
O(1).

16/08/19
Department of Information

Technology
7

Binary Search

• A binary search or half-interval search algorithm finds
the position of a specified input value (the search
"key") within an array sorted by key value.

• For binary search, the array should be arranged in
ascending or descending order.

16/08/19
Department of Information

Technology
8

How Binary Search Works

• Searching a sorted collection is a common task. A
dictionary is a sorted list of word definitions.

• Given a word, one can find its definition. A telephone
book is a sorted list of people's names, addresses, and
telephone numbers. Knowing someone's name allows
one to quickly find their telephone number and
address.

16/08/19
Department of Information

Technology
9

Complexity of Binary
Search

• A binary search halves the number of
items to check with each iteration, so
locating an item (or determining its
absence) takes logarithmic time

16/08/19
Department of Information

Technology
10

INTRODUCTION TO
SORTING

• Sorting is nothing but storage of data in sorted order,
it can be in ascending or descending order.

• The term Sorting comes into picture with the term
Searching. There are so many things in our real life
that we need to search, like a particular record in
database, roll numbers in merit list, a particular
telephone number, any particular page in a book etc.

16/08/19
Department of Information

Technology
11

Insertion sort

• It is a simple sorting algorithm that builds the final
sorted array (or list) one item at a time. This
algorithm is less efficient on large lists than more
advanced algorithms such as quicksort, heap sort, or
merge sort. However, insertion sort provides several
advantages:

• Simple implementation
• Efficient for small data sets
• Stable; i.e., does not change the relative order of

elements with equal keys
• In-place; i.e., only requires a constant amount O(1) of

additional memory space.

16/08/19
Department of Information

Technology
12

How Insertion Sort
Works

16/08/19
Department of Information

Technology
13

Complexity of Insertion
Sort

• The number f(n) of comparisons in the insertion sort
algorithm can be easily computed. First of all, the worst
case occurs when the array A is in reverse order and
the inner loop must use the maximum number K-1 of
comparisons. Hence

 F(n)= 1+2+3+……………………………….+(n-1)=n(n-
1)/2= O(n2)
• Furthermore, One can show that, on the average, there

will be approximately (K-1)/2 comparisons in the inner
loop. Accordingly, for the average case. F(n)=O(n2)

• Thus the insertion sort algorithm is a very slow
algorithm when n is very large.

16/08/19
Department of Information

Technology
14

Selection Sort

• Selection sorting is conceptually the simplest sorting
algorithm.

• This algorithm first finds the smallest element in the
array and exchanges it with the element in the first
position, then find the second smallest element and
exchange it with the element in the second position,
and continues in this way until the entire array is
sorted

16/08/19
Department of Information

Technology
15

How Selection Sort
works

16/08/19
Department of Information

Technology
16

Complexity of Selection Sort
Algorithm

• The number of comparison in the selection sort
algorithm is independent of the original order of the
element. That is there are n-1 comparison during PASS
1 to find the smallest element, there are n-2
comparisons during PASS 2 to find the second smallest
element, and so on. Accordingly

 F(n)=(n-1)+(n-2)+…………………………+2+1=n(n-
1)/2 = O(n2)

16/08/19
Department of Information

Technology
17

Bubble Sort
Let us take the array of numbers "5 1 4 2 8", and sort the array from lowest number to greatest
number using bubble sort. In each step, elements written in bold are being compared. Three passes
will be required.
First Pass:
(5 1 4 2 8) (1 5 4 2 8), Here, algorithm compares the first two elements, and swaps since 5 > 1.
(1 5 4 2 8) (1 4 5 2 8), Swap since 5 > 4
(1 4 5 2 8) (1 4 2 5 8), Swap since 5 > 2
(1 4 2 5 8) (1 4 2 5 8),
Now, since these elements are already in order (8 > 5), algorithm does not swap them.
Second Pass:
(1 4 2 5 8) (1 4 2 5 8)
(1 4 2 5 8) (1 2 4 5 8), Swap since 4 > 2
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
Now, the array is already sorted, but our algorithm does not know if it is completed. The algorithm
needs one whole pass without any swap to know it is sorted.
Third Pass:
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)
(1 2 4 5 8) (1 2 4 5 8)

16/08/19
Department of Information

Technology
18

Complexity of Bubble Sort
Algorithm

• In Bubble Sort, n-1 comparisons will be done in 1st
pass, n-2 in 2nd pass, n-3 in 3rd pass and so on. So
the total number of comparisons will be

 F(n)=(n- 1)+(n-2)+…………………………
+2+1=n(n-1)/2 = O(n2)

16/08/19
Department of Information

Technology
19

Quick Sort

• Quick Sort, as the name suggests, sorts any list very
quickly. Quick sort is not stable search, but it is very
fast and requires very less additional space. It is based
on the rule of Divide and Conquer (also called
partition-exchange sort). This algorithm divides the list
into three main parts

• Elements less than the Pivot element
• Pivot element
• Elements greater than the pivot element

16/08/19
Department of Information

Technology
20

How Quick Sort Works

16/08/19
Department of Information

Technology
21

Complexity of Quick Sort
Algorithm

• The Worst Case occurs when the list is sorted. Then
the first element will require n comparisons to
recognize that it remains in the first position.
Furthermore, the first sublist will be empty, but the
second sublist will have n-1 elements. Accordingly the
second element require n-1 comparisons to recognize
that it remains in the second position and so on.

 F(n)= n+(n-1)+(n-2)+…………………………
+2+1=n(n+1)/2 = O(n2)

16/08/19
Department of Information

Technology
22

Merge Sort

• Merge Sort follows the rule of Divide and Conquer. But
it doesn't divide the list into two halves.

• In merge sort the unsorted list is divided into N sub
lists, each having one element, because a list of one
element is considered sorted. Then, it repeatedly
merge these sub lists, to produce new sorted sub lists,
and at lasts one sorted list is produced.

• Merge Sort is quite fast, and has a time complexity of
O(n log n). It is also a stable sort, which means the
equal elements are ordered in the same order in the
sorted list.

16/08/19
Department of Information

Technology
23

How Merge Sort Works

16/08/19
Department of Information

Technology
24

Complexity of Merge Sort
Algorithm

• Let f(n) denote the number of comparisons needed to
sort an n-element array A using merge-sort algorithm.
The algorithm requires at most log n passes. Each
pass merges a total of n elements and each pass
require at most n comparisons. Thus for both the
worst and average case

• F(n) ≤ n log n
• Thus the time complexity of Merge Sort is O(n Log n)

in all 3 cases (worst, average and best) as merge sort
always divides the array in two halves and take linear
time to merge two halves.

16/08/19
Department of Information

Technology
25

Heap Sort

• Heap Sort is one of the best sorting methods being in-
place and with no quadratic worst-case scenarios.
Heap sort algorithm is divided into two basic parts:

• Creating a Heap of the unsorted list.
• Then a sorted array is created by repeatedly removing

the largest/smallest element from the heap, and
inserting it into the array. The heap is reconstructed
after each removal.

16/08/19
Department of Information

Technology
26

How Heap Sort Works

16/08/19
Department of Information

Technology
27

Complexity of Heap Sort
Algorithm

• The algorithm has two phases, and we analyze the complexity of
each phase separately.

• Phase 1. Since H is complete tree, its depth is bounded by log2m
where m is the number of elements in H. Accordingly, the total
number g(n) of comparisons to insert the n elements of A into H is
bounded as g(n) ≤ n log2n

• Phase 2. Reheaping uses 4 comparisons to move the node L one
step down the tree H. Since the depth cannot exceeds log2m , it
uses 4log2m comparisons to find the appropriate place of L in the
tree H. h(n)≤4nlog2n

• Thus each phase requires time proportional to nlog2n, the running
time to sort n elements array A would be nlog2n

16/08/19
Department of Information

Technology
28

Radix Sort

• The idea is to consider the key one character at a time
and to divide the entries, not into two sub lists, but
into as many sub lists as there are possibilities for the
given character from the key. If our keys, for example,
are words or other alphabetic strings, then we divide
the list into 26 sub lists at each stage. That is, we set
up a table of 26 lists and distribute the entries into the
lists according to one of the characters in the key.

16/08/19
Department of Information

Technology
29

How Radix Sort Works

16/08/19
Department of Information

Technology
30

Complexity of Radix Sort

• The list A of n elements A1, A2,……………An is given.
Let d denote the radix(e.g d=10 for decimal digits,
d=26 for letters and d=2 for bits) and each item Ai is
represented by means of s of the digits:

• Ai = di1 di2………………. dis
• The radix sort require s passes, the number of digits in

each item . Pass K will compare each digit with each of
the d digits. Hence C(n)≤ d*s*n

16/08/19
Department of Information

Technology
31

Binary Search Tree
• A binary search tree (BST), sometimes also called an ordered or

sorted binary tree, is a node based binary tree data structure
where each node has a comparable key and satisfies the
restriction that the key in any node is larger than the keys in all
nodes in that node's left sub tree and smaller than the keys in all
nodes in that node's right sub-tree. The properties of binary search
trees are as follows:

• The left sub tree of a node contains only nodes with keys less than
the node's key.

• The right subtree of a node contains only nodes with keys greater
than the node's key.

• The left and right subtree each must also be a binary search tree.
• Each node can have up to two successor nodes.
• There must be no duplicate nodes.
• A unique path exists from the root to every other node.

16/08/19
Department of Information

Technology
32

Insertion in BST

16/08/19
Department of Information

Technology
33

AVL Trees

An AVL tree is a binary search tree which has the
following properties:

1. The sub-trees of every node differ in height by at
most one.

2. Every sub-tree is an AVL tree.

16/08/19
Department of Information

Technology
34

Insertion in AVL Tree

16/08/19
Department of Information

Technology
35

Insertion in AVL Tree

16/08/19
Department of Information

Technology
36

Deletion in AVL Tree

Let w be the node to be deleted
1) Perform standard BST delete for w.
2) Starting from w, travel up and find the first
unbalanced node. Let z be the first unbalanced node, y
be the larger height child of z, and x be the larger height
child of y. Note that the definitions of x and y are
different from insertion here.
3) Re-balance the tree by performing appropriate
rotations on the subtree rooted with z as explained
above.

16/08/19
Department of Information

Technology
37

M-WAY Search Trees

• A binary search tree has one value in each node and
two subtrees. This notion easily generalizes to an M-
way search tree, which has (M-1) values per node and
M subtrees. M is called the degree of the tree. A binary
search tree, therefore, has degree 2. For example,
here is a 3-way search tree:

16/08/19
Department of Information

Technology
38

B-trees

A B-tree is an M-way search tree with two special
properties:
1. It is perfectly balanced: every leaf node is at the same
depth.
2. Every node, except perhaps the root, is at least half-
full, i.e. contains M/2 or more values
(of course, it cannot contain more than M-1 values). The
root may have any number of values (1 to M-1).

16/08/19
Department of Information

Technology
39

Insertion into a B-Tree

To insert value X into a B-tree, there are 3 steps:
1. Using the SEARCH procedure for M-way trees

(described above) find the leaf node to which X
should be added.

2. Add X to this node in the appropriate place among the
values already there. Being a leaf node there are no
subtrees to worry about.
3. If there are M-1 or fewer values in the node after
adding X, then we are finished.

16/08/19
Department of Information

Technology
40

B+ Tree

• A B+ tree is an n-ary tree with a variable but often
large number of children per node. A B+ tree consists
of a root, internal nodes and leaves.

• The root may be either a leaf or a node with two or
more children. A B+ tree can be viewed as a B-tree in
which each node contains only keys (not key-value
pairs), and to which an additional level is added at the
bottom with linked leaves.

16/08/19
Department of Information

Technology
41

HASHING

Hash Function
A hash function is a function that:
1. When applied to an Object, returns a number
2. When applied to equal Objects, returns the same
number for each
3. When applied to unequal Objects, is very unlikely to
return the same number for each.

16/08/19
Department of Information

Technology
42

Collision Resolution
Techniques

When two values hash to the same array location, this is
called a collision. There are two broad ways of collision
resolution:
1. Separate Chaining:: An array of linked list
implementation.
2. Open Addressing: Array-based implementation
 (i) Linear probing (linear search)
 (ii) Quadratic probing (nonlinear search)
 (iii) Double hashing (uses two hash functions)

16/08/19
Department of Information

Technology
43

STORAGE MANAGEMENT

• Garbage collection (GC) is a form of automatic
memory management. The garbage collector
attempts to reclaim garbage, or memory occupied by
objects that are no longer in use by the program.

• Garbage collection is the opposite of manual memory
management, which requires the programmer to
specify which objects to de-allocate and return to the
memory system.

• Like other memory management techniques, garbage
collection may take a significant proportion of total
processing time in a program and can thus have
significant influence on performance.

16/08/19
Department of Information

Technology
44

Compaction

• The process of moving all marked nodes to one end of
memory and all available memory to other end is
called compaction. Algorithm which performs
compaction is called compacting algorithm.

• After repeated allocation and de allocation of blocks,
the memory becomes fragmented.

• Compaction is a technique that joins the non
contiguous free memory blocks to form one large
block so that the total free memory becomes
contiguous.

16/08/19
Department of Information

Technology
45

ASSIGNMENT QUESTIONS

Q1. What are the factors to be considered during the
selection process of sorting technique?
Q2. Sort the following list in ascending order using
bubble sorting and write an algorithm for the same.
 56,92,38,44,90,61,73,23,2
Q3. Sort the list using quick sorting and explain with the
help of algorithm.
 10,40,8,53,2,13,25,14
Q4. Differentiate between 1. Internal and external search
 2. Primary key and secondary key.
Q 5. Write a c program to find a desired element in an
array using sequential searching technique.

16/08/19
Department of Computer Science

and Engineering
46

ASSIGNMENT QUESTIONS

Q6. How do we resolve the collision?
Q7. What are the factors to be considered during the selection process
of sorting technique?
Q8. Create a B Tree of order 5 on the following data:
 10, 15, 19, 3, 5, 50, 79, 47, 33, 20
Q9. Differentiate between linear search and binary search.
Q10. What is the prerequisite for the binary search?
Q11. What is called as hashing?
Q12. Draw the 11 item hash table resulting from hashing the keys: 12,
44, 13, 88, 23, 94, 11, 39, 20, 16 and 5 using the hash function h(i) =
(2i+5) mod 11.
Q13. Sort the following list using Heap Sort technique, displaying each
step. 20, 12, 25 6, 10, 15, 13.
Q14. When will you sort an array of pointers to list elements, rather
than sorting the elements themselves?

16/08/19
Department of Computer Science

and Engineering
47

TUTORIAL QUESTIONS

Q1. The element being searched for is not found in an array of
100 elements. What is the average number of comparisons
needed in a sequential search to determine that the element is
not there, if the elements are completely unordered?
Q2. Show the result of inserting the keys.
F, S, Q, K, C, L, H, T, V, W, M, R, N , P, A, B, X, Y, D, Z, E in the
order to an empty B-tree of degree-3.
Q3.What do you mean by hash clash? Explain in detail any one
method to resolve hash collisions.
Q4. Define Hashing. How do collisions happen during hashing?
Explain the different techniques resolving of collision.
Q5. Write an algorithm for quick sort. Trace your algorithm on the
Following data to sort the list:
2,15,4,21,56,7,85,51,8,1,59,42,10,9.

16/08/19
Department of Computer Science

and Engineering
48

Outcomes

After reading above topics students will be
able to:

• Understand various searching and sorting
techniques.

Department of Computer Science and
Engineering

4916/08/19

References

1)Data Structures and Algorithms Made Easy by
Narasimha Karumanchi

2)Lipschutz, “Data Structures” Schaum’s Outline
Series, Tata McGraw-hill Education (India) Pvt. Ltd.
3) Thareja, “Data Structure Using C” Oxford Higher
Education.
4) AK Sharma, “Data Structure Using C”, Pearson
Education India.
5)Rajesh K. Shukla, “Data Structure Using C and
C++” Wiley Dreamtech Publication.

16/08/19
Department of Computer Science and

Engineering
50

	DATA STRUCTURES
	Slide 2
	Syllabus
	Slide 4
	Linear Search
	How Linear Search works
	Complexity of linear Search
	Binary Search
	How Binary Search Works
	Complexity of Binary Search
	INTRODUCTION TO SORTING
	Insertion sort
	How Insertion Sort Works
	Complexity of Insertion Sort
	Selection Sort
	How Selection Sort works
	Complexity of Selection Sort Algorithm
	Bubble Sort
	Complexity of Bubble Sort Algorithm
	Quick Sort
	How Quick Sort Works
	Complexity of Quick Sort Algorithm
	Merge Sort
	How Merge Sort Works
	Complexity of Merge Sort Algorithm
	Heap Sort
	How Heap Sort Works
	Complexity of Heap Sort Algorithm
	Radix Sort
	How Radix Sort Works
	Complexity of Radix Sort
	Binary Search Tree
	Insertion in BST
	AVL Trees
	Insertion in AVL Tree
	Insertion in AVL Tree
	Deletion in AVL Tree
	M-WAY Search Trees
	B-trees
	Insertion into a B-Tree
	B+ Tree
	HASHING
	Collision Resolution Techniques
	STORAGE MANAGEMENT
	Compaction
	ASSIGNMENT QUESTIONS
	ASSIGNMENT QUESTIONS
	TUTORIAL QUESTIONS
	Slide 49
	References

