
 Software Lifecycle Models

A software lifecycle model is a standardised

format for
• planning
• organising, and
• running

a new development project.

Hundreds of different kinds of models are

known and used.

Many are minor variations on just a small

number of basic models. In this section we:

• survey the main types of model, and
• consider how to choose between them.

6.1. Planning with Models

SE projects usually live with a fixed financial
budget. (An exception is maintainance?)

Additionally, time-to-market places a strong
time constraint.

There will be other project constraints such
as staff.

Project constraints

money

time
Computing
resources

 staff

programmers managers
designers

Examples of Project Constraints

Project planning is the art of scheduling the

necessary activities, in time, space and
across

staff in order to optimise:

• project risk [low] (see later)
• profit [high]
• customer satisfaction [high]
• worker satisfaction [high]
• long-term company goals

Questions:

1. What are these necessary activities?

(besides programming)

2. Are there good patterns of organisation

that we could copy?

A project plan contains much information,

but must at least describe:
• resources needed

(people, money, equipment, etc)
• dependency & timing of work

(flow graph, work packages)
• rate of delivery (reports, code, etc)

It is impossible to measure rate of progress

except with reference to a plan.

In addition to project members, the following

may need access to parts of the project plan:

• Management,
• Customers
• Subcontractors
• Suppliers
• Investors
• Banks

6.2. Project Visibility

Unlike other engineers

(e.g. civil, electronic, chemical … etc.)

software engineers do not produce anything

physical.

It is inherently difficult to monitor an SE

project due to lack of visibility.

This means that SE projects must produce

additional deliverables (artifacts)

which are visible, such as:
• Design documents/ prototypes
• Reports
• Project/status meetings
• Client surveys (e.g. satisfaction level)

6.3. What is a Lifecycle Model?

Definition.

A (software/system) lifecycle model is a

description of the sequence of activities

carried out in an SE project, and the relative

order of these activities.

It provides a fixed generic framework that

 can be tailored to a specific project.

Project specific parameters will include:
• Size, (person-years)
• Budget,
• Duration.

project plan =

lifecycle model + project parameters

There are hundreds of different lifecycle models
to choose from, e.g:
• waterfall,
• code-and-fix
• spiral
• rapid prototyping
• unified process (UP)
• agile methods, extreme programming (XP)
• COTS …
but many are minor variations on a smaller
number of basic models.

By changing the lifecycle model, we can

 improve and/or tradeoff:

• Development speed (time to market)
• Product quality
• Project visibility
• Administrative overhead
• Risk exposure
• Customer relations, etc, etc.

Normally, a lifecycle model covers the entire
lifetime of a product.

From birth of a commercial idea
to final de-installation of last release

i.e. The three main phases:
• design,
• build,
• maintain.

Note that we can sometimes combine

 lifecycle models,

e.g. waterfall inside evolutionary – onboard
shuttle software

We can also change lifecycle model between

 releases as a product matures,

e.g. rapid prototyping  waterfall

6.4. The Waterfall Model

• The waterfall model is the classic lifecycle

model – it is widely known, understood

and (commonly?) used.
• In some respect, waterfall is the ”common

sense” approach.
• Introduced by Royce 1970.

User Requirements

Software Requirements

Architecture Design

Detailed design & Coding

Testing

Delivery

The Waterfall
Lifecycle Workflow

Time

User Requirements Document

Software Requirements
Document

Architectural Design
Document

Detailed
Design
& Code

phase
output

”Swimming
upstream”

Advantages

1. Easy to understand and implement.

2. Widely used and known (in theory!)

3. Reinforces good habits: define-before- design,
design-before-code

4. Identifies deliverables and milestones

5. Document driven, URD, SRD, … etc. Published
documentation standards, e.g. PSS-05.

6. Works well on mature products and weak teams.

Disadvantages I

1. Idealised, doesn’t match reality well.

2. Doesn’t reflect iterative nature of
exploratory development.

3. Unrealistic to expect accurate
requirements so early in project

4. Software is delivered late in project,
delays discovery of serious errors.

Disadvantages II

5. Difficult to integrate risk management

6. Difficult and expensive to make changes

to documents, ”swimming upstream”.

7. Significant administrative overhead,

costly for small teams and projects.

6.5. Code-and-Fix

This model starts with an informal general

product idea and just develops code until a

 product is ”ready” (or money or time runs

 out). Work is in random order.

Corresponds with no plan! (Hacking!)

Advantages

1. No administrative overhead

2. Signs of progress (code) early.

3. Low expertise, anyone can use it!

4. Useful for small “proof of concept”
projects, e.g. as part of risk reduction.

Disadvantages

1. Dangerous!
1. No visibility/control

2. No resource planning

3. No deadlines

4. Mistakes hard to detect/correct

2. Impossible for large projects,

communication breakdown, chaos.

6.6. Spiral Model

Since end-user requirements are hard to

obtain/define, it is natural to develop software

in an experimental way: e.g.

1. Build some software

2. See if it meets customer requirements

3. If no goto 1 else stop.

This loop approach gives rise to structured

iterative lifecycle models.

In 1988 Boehm developed the spiral model as

an iterative model which includes risk

analysis and risk management.

Key idea: on each iteration identify and solve

the sub-problems with the highest risk.

Cumulative cost Evaluate alternatives,
Identify & resolve risks

Develop & verify
next-level product

Plan next phase

Determine objectives,
alternatives & constraints

Review &
commitment

Prototypes

P1 P2 P3
Operational
PrototypeStart

End

Requirements
plan

Development
plan

Integration &
Test plan

Requirements
validation

Design,
Validation
& Verification

Detailed design

Coding

Unit & Integration
Testing

Acceptance
Testing

Concept
Of Operation

Each cycle follows a waterfall model by:

1. Determining objectives

2. Specifying constraints

3. Generating alternatives

4. Identifying risks

5. Resolving risks

6. Developing next-level product

7. Planning next cycle

Advantages

1. Realism: the model accurately reflects the
iterative nature of software development
on projects with unclear requirements

2. Flexible: incoporates the advantages of
the waterfal and rapid prototyping
methods

3. Comprehensive model decreases risk

4. Good project visibility.

Disadvantages

• Needs technical expertise in risk analysis to
really work

• Model is poorly understood by non-
technical management, hence not so widely
used

• Complicated model, needs competent
professional management. High
administrative overhead.

6.7. Rapid Prototyping

Key idea: Customers are non-technical and

usually don’t know what they want/can have.

Rapid prototyping emphasises requirements

analysis and validation, also called:
• customer oriented development,
• evolutionary prototyping

Requirements Capture

Quick Design

Build Prototype

Customer Evaluation of
Prototype

Engineer Final
Product

The Rapid
Prototype Workflow

Iterate

Advantages

1. Reduces risk of incorrect user requirements

2. Good where requirements are
changing/uncommitted

3. Regular visible progress aids management

4. Supports early product marketing

Disadvantages I

1. An unstable/badly implemented prototype
often becomes the final product.

2. Requires extensive customer collaboration
– Costs customers money
– Needs committed customers
– Difficult to finish if customer withdraws
– May be too customer specific, no broad

market

Disadvantages II

3. Difficult to know how long project will
last

4. Easy to fall back into code-and-fix
without proper requirements analysis,
design, customer evaluation and feedback.

6.8. Agile (XP) Manifesto

XP = Extreme Programming emphasises:
• Individuals and interactions

– Over processes and tools

• Working software
– Over documentation

• Customer collaboration
– Over contract negotiation

• Responding to change
– Over following a plan

6.8.1. Agile Principles
(Summary)

• Continuous delivery of software
• Continuous collaboration with customer
• Continuous update according to changes
• Value participants and their interaction
• Simplicity in code, satisfy the spec

6.9. XP Practices (Summary)

• Programming in pairs
• Test driven development
• Continuous planning, change , delivery
• Shared project metaphors, coding standards

and ownership of code
• No overtime! (Yeah right!)

Advantages

• Lightweight methods suit small-medium
size projects

• Produces good team cohesion
• Emphasises final product
• Iterative
• Test based approach to requirements and

quality assurance

Disadvantages

• Difficult to scale up to large projects where
documentation is essential

• Needs experience and skill if not to
degenerate into code-and-fix

• Programming pairs is costly
• Test case construction is a difficult and

specialised skill.

6.10. Unified Process (UP)

• Booch, Jacobson, Rumbaugh 1999.
• Lifetime of a software product in cycles:
• Birth, childhood, adulthood, old-age,

death.
• Product maturity stages
• Each cycle has phases, culiminating in a

new release (c.f. Spiral model)

Inception Elaboration

ConstructionTransition

UP Lifecycle – single phase workflow
(drawn as a UML Statechart!)

• Inception – identify core use cases, and use
to make architecture and design tradeoffs.
Estimate and schedule project from derived
knowledge.

• Elaboration – capture detailed user
requirements. Make detailed design, decide
on build vs. buy.

• Construction – components are bought or
built, and integrated.

• Transition – release a mature version that
satisfies acceptance criteria.

Unified Process
Software Lifecycle

Cycle

Phase

Iteration

Artifact

Workflow

Management

Environment

Requirements

Design

Implementation

Assessment

Deployment

*

*

Inception

Elaboration

Construction

Transition

*

*

4

Product

releases

Use Case Model

Analysis Model

Design Model

Deployment Model

Implementation Model

Test Model

specified by
realised by

deployed by implemented by

verified by

All models are interdepedent
but this only shown for use
case model

UML class diagram!

6.11. COTS

• COTS =
Commercial Off-The-Shelf software

• Engineer together a solution from existing
commercial software packages using
minimal software ”glue”.

• E.g. using databases, spread sheets, word
proccessors, graphics software, web
browsers, etc.

Advantages
• Fast, cheap solution
• May give all the basic functionality
• Well defined project, easy to run
Disadvantages
• Limited functionality
• Licensing problems, freeware, shareware,

etc.
• License fees, maintainance fees, upgrade

compatibility problems

	Software Lifecycle Models
	Slide 2
	6.1. Planning with Models
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	6.2. Project Visibility
	Slide 10
	6.3. What is a Lifecycle Model?
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Advantages
	Disadvantages I
	Disadvantages II
	6.5. Code-and-Fix
	Advantages
	Disadvantages
	6.6. Spiral Model
	Slide 26
	Slide 27
	Slide 28
	Advantages
	Disadvantages
	6.7. Rapid Prototyping
	Slide 32
	Advantages
	Disadvantages I
	Disadvantages II
	6.8. Agile (XP) Manifesto
	6.8.1. Agile Principles (Summary)
	6.9. XP Practices (Summary)
	Advantages
	Disadvantages
	6.10. Unified Process (UP)
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	6.11. COTS
	Slide 47

