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Unit- IV - Curves and Surfaces: _
1. Quadric surfaces

2. Spheres

3. Ellipsoid

4. Blobby objects

5. Introductory concepts of Spline

6. Bspline and Bezier curves and surfaces.



Curves and Surfaces
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Curves and Surfaces

* Displays of three dimensional curved lines and surfaces can be
generated from an input set of mathematical functions defining the
objects or from a set of users specified data points.

e When functions are specified, a package can project the defining
equations for a curve to the display plane and plot pixel positions
along the path of the projected function.

{ interpolating data point

data points

approximating curve




Quadric surfaces

* A frequently used class of objects are the quadric surfaces, which are
described with second-degree equations (quadratics).

* They include
Spheres, SH]IEI'E
Ellipsoids,

Paraboloids,

BwoN R

v .
Hyperboloids etc. ™ - F} + I rt



Quadric surfaces
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Sphere

* In Cartesian coordinates, a spherical surface with radius r centered on
the coordinate origin is defined as the set of points (x, y, z) that satisfy
the equation

1’1+y5'+:-"—r:



Sphere in parametric form

* We can also describe the
spherical surface in parametric
form, using latitude and

longitude angles.

Z axis
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ngurt 10-8
Parametric coordinate

position (r, 8, $) on the
surface of a sphere with
radius r.



Sphere in parametric form

We can also describe the spherical surface in parametric form, using latitude and
longitude angles (Fig. 10-8):

X = rcosé cos#, -mf2=¢=m/2
y=rcos¢sing, -—-w=f=mn (16-8)
zZ = rsing
7 axisy
H;.,l" = (% v 2




Ellipsoid

* An ellipsoidal surface can be described as an extension of a spherical
surface, where the radii in three mutually perpendicular directions
can have different values.




Ellipsoid

* The Cartesian representation for points over the surface of an
ellipsoid centered on the origin is

d 2 2 zy
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Ellipsoid - Parametric representation

And a parametric representation for the ellipsoid in terms of the latitude angle ¢
and the longitude angle @in Fig. 10-8 is

X =r,cos¢cosd, -mfl=¢=7/2
y = r,cosdsind, ~mr=8= 17 CI0-Tih
= r,sing




Superquadrics




Superquadrics

e Superquadrics are formed by incorporating additional parameters
into the quadric equations to provide increased flexibility for
adjusting object shapes.

* The number of additional parameters used is equal to the dimension
of the object: one parameter for curves and two parameters for
surfaces.




Superquadrics

1. Superellipse
2. Superellipsoid



Superellipse
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superellipse

* We obtain a Cartesian representation for a superellipse from the
corresponding equation for an ellipse by allowing the exponent on
the x and y terms to be variable.

2/5 2/s
(f) + (1) =1 (10-13)

Fe Ty

where parameter s can be assigned any real value. When s = 1, we get an ordi-
nary ellipse.



Superellipse — In parametric form

2/ 2/8
(5) + (1) S =1 (10-13)

re Ty

where parameter s can be assigned any real value. When s = 1, we get an ordi-
nary ellipse.

Corresponding parametric equations for the superellipse of Eq. 10-13 can be
expressed as

x = rycos*h, -wm=f=n
(10-14
y = rysin’6



Superellipse
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Superellipsoids

A Cartesian representation for a superellipsoid is obtained from the equation for
an ellipsoid by incorporating two exponent parameters:

/8 /% P2’ #1 2/s
[(i) + (1) ] + (i) ‘= (10-15)
Fy Ty Fe

For sy = s, = 1, we have an ordinary ellipsoid.
We can then write the corresponding parametric representation for the
superellipsoid of Eq. 10-15 as
x = r,cos" ¢ cos: 8, -—m/2=¢d=1n/2
y =rcoshdsined, -—w=6sw {1()-161
= r,sin’t¢




Superellipsoids

e Figure 10-13 illustrates supersphere shapes that can be generated
using various values for parameters s, and s2.

* These and other superquadric shapes can be combined to create
more complex structures, such as furniture, threaded bolts, and other
hardware



Superellipsoids

Figure 10-13
Superellipsoids plotted with different values for parameters
syand s, and withr, =r, =r,



Blobby objects

093¢

Figure 10-14

Molecular bonding, As two
molecules move away from
each other, the surface shapes
stretch, snap, and finally

contract into spheres.

(a)
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Figure 10-15
Blobby muscle shapes ina

human arm.



Blobby objects




Blobby objects

* Some objects do not maintain a fixed shape
* They change their surface characteristics in certain motions

* These objects are referred to as blobby objects, since their shapes
show a certain degree of fluidity

* Examples in this class of objects include
1. water droplets

2. melting objects

3. muscle shapes in the human body.



Blobby objects

* Several models have been
developed for representing blobby
objects as distribution functions
over a region of space.

 Combinations of Gaussian density
functions, or "bumps” (Fig 10.16)

b
-3 ol @ &
Figure 10-16
A three-dimensional

Gaussian bump centered at
position 0, with height b and
standard deviation a.



Blobby objects

* Several models have been
developed for representing blobby
objects as distribution functions
over a region of space.

 Combinations of Gaussian density
functions, or "bumps” (Fig 10.16)

b
-3 ol @ &
Figure 10-16
A three-dimensional

Gaussian bump centered at
position 0, with height b and
standard deviation a.



Blobby objects

e A surface function is then defined as

Figure 10-17

f(x, y, Z) = E bk(.’—‘"‘: -T =0 A composite blobby object
formed with four Gaussian
A bumps.

where r} = Vx{ + y{ + z{, parameter T is some specified threshold, and parame-
ters @ and b are used to adjust the amount of blobbiness of the individual objects.
Negative values for parameter b can be used to produce dents instead of bumps.



Blobby objects — Metaballs




Blobby objects
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Blobby objects - metaball

* The "metaball” model describes blobby objects as combinations of
guadratic density functions of the form

b(1 ~3r2/d?®), i0<r=<d/3
fir) = gb(l - r/d), ifd/3<r=d
0, ifr>d

And the “soft object” model uses the function

r

- Vol

=177 * o "o
0, ifr>d

fo<r=d




Spline

* Drafting terminology

* Spline is a flexible strip that is easily flexed to pass through a series
of design points (control points) to produce a smooth curve.

* Spline curve — a piecewise polynomial (cubic) curve whose
first and second derivatives are continuous across the
various curve sections.



Spline Representations

* A spline is a smooth curve
defined  mathematically
using a set of constraints

* Splines have many uses:
e 2D illustration
* Fonts
* 3D Modelling
* Animation




Big ldea

» User specifies control points

* Defines a smooth curve

A
N



Interpolation Vs Approximation

* A spline curve is specified using a
set of control points

* There are two ways to fit a curve to
these points:

* Interpolation - the curve passes
through all of the control points

* Approximation - the
curve does not pass

through all of the control . . 0
points /\/

. . [+
* Approximation for structure or shape
* Interpolation for animation



Convex Hulls

* The boundary formed by the set of control points for a spline is
known as a convex hull

* Think of an elastic band stretched around the control points




Control Graphs

* A polyline connecting the control points in order is known as a
control graph

» Usually displayed to help designers keep track of their splines




Piecewise cubic splines

Splines in computer graphics:
Piecewise cubic splines

N1

Segments



ypes of Curves

* A curve is an infinitely large set of points. Each point has two
neighbors except endpoints. Curves can be broadly classified into
three categories -

 explicit, implicit, and parametric curves.
* Implicit Curves



Implicit Curves

* Implicit curve representations define the set of points on a curve by
employing a procedure that can test to see if a point in on the curve.

* Usually, an implicit curve is defined by an implicit function of the
form -

* f(x,y) =0
* Eg. Acommon example is the circle, whose implicit representation is
*x>+y?-R%2=0



Explicit Curves

* A mathematical function y = f(x) can be plotted as a curve.
e Such a function is the explicit representation of the curve.



Parametric curve

* The explicit and implicit curve representations can be used only when
the function is known.

e Curves having parametric form are called parametric curves.
* In practice the parametric curves are used.

e Every point on the curve is having two neighbors (other than the end
points).



Parametric curve

* A two-dimensional parametric curve has the following form -

* P(t) = f(t), g(t) or P(t) = x(t), y(t)

* The functions f and g become the (x, y) coordinates of any point on
the curve, and the points are obtained when the parameter t (or u)
is varied over a certain interval [a, b], normally [O, 1].



Parametric Continuity Conditions

* To ensure a smooth transition from one section of a piecewise
parametric curve to the next, we can impose various continuity
conditions at the connection points.

* If each section of a spline is described with a set of parametric
coordinate functions of the form

v = x(u), v = wu), z = zZ{u), My S N = U0y



Parametric Continuity Conditions

* Three types of continuity
1. Zero Order Continuity

2. First Order Continuity

3. Second Order Continuity



Zero Order Continuity

* Two piece of curve must meet at transition point

* Segments have to match ‘nicely’.

* Given two segments P(u) and Q(v).

* We consider the transition of P(1) to Q(O).

e Zero-order parametric continuity

« CY: P(1) = Q(0).

* Endpoint of P(u) coincides with start point Q(v).

P(u) Q(v)



First Order Continuity

* First parametric derivatives (tangent lines) of the coordinate functions
two successive curve sections are equal at their joining point.

* Segments have to match ‘nicely’.
* Given two segments P(u) and Q(v).
* We consider the transition of P(1) to Q(O).

* First order parametric continuity |
+ C1: dP(1)/du = dQ(0)/dv. P(u) Q)

 Direction of P(1) coincides with direction of Q(0).



Second Order Continuity

» Second-order parametric continuity, or C2 continuity, means that both
the first and second parametric derivatives of the two curve sections
are the same at the intersection.

* Given two segments P(u) and Q(v).

* We consider the transition of P(1) to Q(O).

* Second order parametric continuity P(u) Q(v)
e C2: d?P(1)/du? = d?Q(0)/dv>?.

e Curvatures in P(1) and Q(0) are equal.



Geometric Continuity

* |t suffices to require that the directions are the same:

* geometric continuity.

P(u) Q(v) P(u) Q)



Geometric Continuity

An alternate method for joining two successive curve sections

[t suffices to require that the directions are the same:
geomelric continuity.

P(u) Q(v)



Geometric Continuity

An alternate method for joining two successive curve sections
1. Zero Order Geometric Continuity

2. First Order Geometric Continuity

3. Second Order Geometric Continuity



Geometric Continuity

1. Zero Order Geometric Continuity
* the two curves sections must have the same coordinate position at the
boundary point ( Same as zero order parametric continuity)
2. First Order Geometric Continuity
* the parametric first derivatives are proportional at the intersection of two
successive sections (In parametric continuity these are equal)
3. Second Order Geometric Continuity

* both the first and second order derivatives of the two .curve sections are
proportional at their boundary



Spline Representation

* There are three equivalent methods for specifying a particular spline
representation:

* (1) We can state the set of boundary conditions that are imposed on
the spline;

* (2) we can state the matrix that characterizes the spline;
* (3) we can state the set of blending functions



boundary conditions

* Boundary conditions for this curve might be set,

» for example, on the endpoint coordinates x(0) and x(l) and on the
parametric first derivatives at the endpoints x'(0)and x' (1) .

* Boundary conditions are sufficient to determine the values of the
four coefficients ax, bx, cx, and dx.



boundary conditions

3 2
[ au +bu-+enu+id, :

P(u)= (x(u), y(u), z(zz)) = a}.u3 + b_‘,u2 +cu+d, | ,withO<u<]
au’ +bu’+cu+d.

\ /
(a.\' a_\' a: \
o b. b, b,
=(u" U~ u 1) ' : - |=UC.
e € €
\d\ a’y d )

U: Powers of u C: Coefficient matrix ~ H&B 8-8:420-425



Matrix Form

e we can obtain the matrix that characterizes this spline curve by first
rewriting Eq as the matrix product

Variant 2 ;
/1‘/-/00 My, My My W (Po.\- Hn- k. 1
. s M M M., M B, B, A,
P(u)z(u" - l) 10 11 12 13 1 )l_ 12
MZ() M?.l M22 M23 PZ,\' 12,1' 1)2:
M3y M3 M, M.nIJ \1)3.\- B, 1))
) I
= [IMspline P] = UMs lineMueom 6101777'011)01.77]'3 gF
P ; . ~ g s -
2 Control vectors
\P; )

H&B 8-8:420-425

Matrix M ;. “translates’ geometric info to coetficients



blending functions

Variant 3:
P(u)=B,(u)P, + B,(u)P, + B, (u)P, + B;(u)P,

=ZB/.-(”)PA-

k=0

with B, () = b, u” + b u” + b, u+b,, blending functions



Bezier curves

* Bezier curve is discovered by the French engineer Pierre Bézier.

* These curves can be generated under the control of other points.
Approximate tangents by using control points are used to generate
curve.

B(12) ’

Simple Bezier Curve Quadratic Bazier Curve Cubic Bazier Curve



Bezier curves

can be represented mathematically as —
TE
> RB()
f=—1)

Where p; is the set of points and B! () represents the Bernstein polynomials

which are given by —
B (t) = (”“) (1— &)
T

Where n is the polynomial degree, 1 is the index, and t is the variable.



Bezier curves

* The simplest Bézier curve is the straight line from the point PO to P1.
* A quadratic Bezier curve is determined by three control points.
* A cubic Bezier curve is determined by four control points.

B(12) - '
PO
P

Simple Bezier Curve Quadratic Bazier Curve Cubic Bazier Curve




Properties of Bezier curves

* They generally follow the shape of the control polygon, which consists
of the segments joining the control points.

* They always pass through the first and last control points.
* They are contained in the convex hull of their defining control points.

* The degree of the polynomial defining the curve segment is one less
that the number of defining polygon point. Therefore, for 4 control
points, the degree of the polynomial is 3, i.e. cubic polynomial.

* A Bezier curve generally follows the shape of the defining polygon.



Properties of Bezier curves

* The direction of the tangent vector at the end points is same as that of the
vector determined by first and last segments.

* The convex hull property for a Bezier curve ensures that the polynomial
smoothly follows the control points.

* No straight line intersects a Bezier curve more times than it intersects its
control polygon.

* They are invariant under an affine transformation.

e Bezier curves exhibit global control means moving a control point alters the
shape of the whole curve.

* A given Bezier curve can be subdivided at a point t=t0 into two Bezier
segments which join together at the point corresponding to the parameter
value t=t0.



Bezier curves

e Suppose we are given n + 1 control-point positions: pk = (xk, yk, zk),
with k varying from 0 to n.

* These coordinate points can be blended to produce the position
vector P(u), which describes the path of an approximating Bezier
polynomial function between P, and P,

P(u) = > peBEZ,,(w), 0O=u=]
0

)
A »
L



Bezier curves

”n

Pu) = > pBEZ\(w), O=u=1 (1t-40)
k=0

The Bézier blending functions BEZ, , (1) are the Bernstein polynomials:
BEZ, (u) = Cin, )u*(1 = w)" ! (1)-41)

where the C(n, k) are the binomial coefficients:

!
Cn k)=~

- 1-42)
K'(n — kY (=



Bezier curves

three parametric equations for the individual curve coordinates:

x(u) = }_ v, BEZ, (1)
A«0Q

y(u) = y. BLZ. . (u)

k

2(w) = .\,_ 2, BEZ, (1)

k=D



Bezier curves Numericals and derivation

Question: - Construct Bezier Curve for control points P0(4,2) P1(8,8) P2(16.4) P1 iy

Solution: - 3 Control Points
so degree =2 / \\

P(u)=YP,B,, (). O<y<l - P2 3,39
=0



Bezier curves and surfaces

P(u) = Z"(‘;P,-B,-.,, (), OQ<y<l]

P(u) = P, By ,(u) + P, B, ,(u) + P, B, ,(u)
Now parametric equation

X=XgBg,(u) +X,B,,(u) +x, B,,(u)

Y =Yo B (u) +y, B2 (u) +y, By, ()



Bezier curves and surfaces

P(u) =Py By ,(u)+ P, By ,(u) + P, B, 5(u)

Now parametric equation

X =Xg By, (u) +x, By, (u) +x, B;,(u)
Y =Yo B, () +y; By, (u) +y, By, (u)

Now By, (u) = C(n,1) u*(1-u)i!

=> (n!)/1/(n-1)! ui(l-u)¥!

=>(2!)/0!(2-0)! ui(l-u)g! =>(1-u)?

By, (u) = C(n,1) ui(l-u)i! after solving
B;,(u)=C(n.1) u*(l-u)?' after solving

=>2u(1-u)
=> u?

BEZ, .(u) = Cin, u*(1 = w)"*

~n. k n!
Cn, k) = kK'(n = k)




Bezier curves and surfaces

Now after substitute values of blending function
X = X, (1-u)* + X; 2u(1-u) + x, v?
y = Yo (1-u)* +y, 2u(l-u) +y, v

Now put the value of x,=4

Yo =2

Xx=4 (1-u)* + 8*2*u(l-u) + 16 v?
y =2 (1-u)* +8* 2*u(1-u) + 4 u?

x3=16
y: =4

after solving equationx= 4u*+8u+4

after solving equation y=-10uv*+12u+2



Bezier curves and surfaces

X =4 (1-u)* + 8*2*u(1-u) + 16 uv? after solving equationx= 4u*+8u+4

y =2 (1-u)* +8* 2*u(1-u) + 4 v? after solving equation y=-10u*+12u~+2
I R T
0 - 2
0.2 5.76 4.0
0.4 7.84 5.20
0.6 10.24 5.6
0.8 12.96 5.2

1 16 B




Bezier curves and surfaces

* 1)Given control points (10,100), (50, 100), (70,120) and (100, 150).
Calculate coordinates of any four points lying on the corresponding
Beizer curve.

 2) Set up the equation of Beizer curve and roughly trace it for three
control points (1,1), (2,2) and (3,1).
(From CO-RCS603.4)



B-Spline

* Motivation (recall bezier curve)

— The degree of a Bezier Curve 1s
determined by the number of
control points

— E. g. (bezier curve degree 11) —
difficult to bend the "neck" toward
the line segment P ,P..

— Of course. we can add more control
points.

— BUT this will increase the degree
of the curve = increase
computational burden




B-Spline

Motivation (recall bezier curve)

— moving a control point affects the
shape of the entire curve- (global
modification property) —
undesirable.

- Thus, the solution 1s B-Spline — the
degree of the curve 1s independent
of the number of control points

- E.g - night figure — a B-spline curve
of degree 3 defined by 8 control
points




B-Spline

e In fact, there are five Bézier curve
segments of degree 3 joining
together to form the B-spline curve
defined by the control points

* little dots subdivide the B-spline
curve mnto Bézier curve segments.

* Subdividing the curve directly 1s
difficult to do = so. subdivide the
domain of the curve by points
called knots




B-Spline

* In summary, to design a B-spline curve, we
need a set of control points, a set of knots
and a degree of curve.



B-Spline : definition

P(ll) =2 Ni.k(u)pi (110 SUu s um)
u. =2 knot

[u;, u.,,) =2 knot span

(uy, Uy, Usy, ....u, )2 knot vector

The point on the curve that corresponds to a knot u,, =
knot point ,P(u,)

[f knots are equally space = uniform (e.g, 0, 0.2, 0.4,
0.6...)

Otherwise =2 non uniform (e.g: 0, 0.1, 0.3, 0.4, 0.8 ...)



Type of B-Spline uniform knot vector

/ \___

e

<"”'"_N}3ﬂ'l3‘fri0dic knots ™ ' fﬁﬁerindic knots _ Hx'\.
~(openknots) “~__(non-open kl_l_@_t:::;.lf"/

.

-First and last knots are

duplicated k times.
-E.2(0.0,0.1.2.2.2)

-First and last knots are
not duplicated — same

C <« throush contribution.
-Curve pass through the Eg(0.1.2.3)
first and last control . e
. -Curve doesn’t pass
points

through end points.

- used to generate closed
curves (when first = last
control points)



Type of B-Spline knot vector

Periodic knots
non-open knots

Non—periodic_k?ch

open knots)

(Closed knots) -



Non-periodic (open) uniform B-Spline

» The knot spacing 1s evenly spaced except at the ends
where knot values are repeated k times.

* Eg P(ll) — Z_:ﬂNi.k(u)pi (u[] <u< um)
* Degree = k-1. number of control points =n + 1
* Number of knots=m+1 @ n+k+1

—> for degree = | and number of control points =4 2(k=2.n = 3)
— Number of knots=n+k+1=6
non periodic uniform knot vector (0,0,1,2.3, 3)

* Knot value between 0 and 3 are equally spaced =
uniform



Non-periodic (open) uniform B-Spline

* For any value of parameters k and n, non
pertodic knots are determined from

[0 0<1<k
u, = 1—k+1 k<1<n (1.3)
L n—-k+2 n<1<ntk
e.g k=2.n=3
(0 0<1<2
u=791-2+1 2<1<3
3—-2+2 3<1<5



B-Spline basis function

N N, ,
N (u)=(u—-u )—= ) + (o, —u)——= ) (1.1)
| Uy — U, U p —Uy
N - ;1 u, < z.; <u,, )
‘ 0 Otherwise




Non-periodic (open) uniform B-Spline

Example

* Find the knot values of a non periodic
uniform B-Spline which has degree = 2 and
3 control points. Then, find the equation of
B-Spline curve 1 polynomial form.



Non-periodic (open) uniform B-Spline
Answer

* Degree =k-1=2 -2 k=3

* Control points=n+1=3 = n=2

 Number of knot=n+k+1=06

» Knot values =2 u,=0, u,=0, u,=0, u;=1,u,=1,us=1



Non-periodic (open) uniform B-Spline

Answer(cont)

* To obtain the polynomial equation,
P(u) =2 N (u)p;

- =Y N;p
*  =Ny;Wp, + N, 5wp, + N, ;(u)p,

* firstly, tind the N, (u) using the knot value that
shown above, start from k =1 to k=3



The polynomial equation, P(u) = Z N, ((w)p;
* P(u) = N ;(wp,+ Ny ;(wp, + N, 5(u)p, |
o =(1-u)’p,+2u(l-u) p, +u’p, (O <=u<=1)



Bspline curves and surfaces

* From pdf



References

e Bezier Curve

 https://www.tutorialspoint.com/computer graphics/computer graph
ics _curves.htm



https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm
https://www.tutorialspoint.com/computer_graphics/computer_graphics_curves.htm

